Metamath Proof Explorer


Definition df-orvc

Description: Define the preimage set mapping operator. In probability theory, the notation P ( X = A ) denotes the probability that a random variable X takes the value A . We introduce here an operator which enables to write this in Metamath as ( P( X oRVCI A ) ) , and keep a similar notation. Because with this notation ( X oRVC I A ) is a set, we can also apply it to conditional probabilities, like in ( P( X oRVCI A ) | ( Y oRVC I B ) ) ) .

The oRVC operator transforms a relation R into an operation taking a random variable X and a constant C , and returning the preimage through X of the equivalence class of C .

The most commonly used relations are: - equality: { X = A } as ( X oRVCI A ) cf. ideq - elementhood: { X e. A } as ( X oRVC E A ) cf. epel - less-than: { X <_ A } as ( X oRVC <_ A )

Even though it is primarily designed to be used within probability theory and with random variables, this operator is defined on generic functions, and could be used in other fields, e.g., for continuous functions. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Assertion df-orvc RV/cR=xx|Funx,aVx-1y|yRa

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 corvc classRV/cR
2 vx setvarx
3 2 cv setvarx
4 3 wfun wffFunx
5 4 2 cab classx|Funx
6 va setvara
7 cvv classV
8 3 ccnv classx-1
9 vy setvary
10 9 cv setvary
11 6 cv setvara
12 10 11 0 wbr wffyRa
13 12 9 cab classy|yRa
14 8 13 cima classx-1y|yRa
15 2 6 5 7 14 cmpo classxx|Funx,aVx-1y|yRa
16 1 15 wceq wffRV/cR=xx|Funx,aVx-1y|yRa