Metamath Proof Explorer


Theorem orvcval

Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1 φ Fun X
orvcval.2 φ X V
orvcval.3 φ A W
Assertion orvcval φ X R RV/c A = X -1 y | y R A

Proof

Step Hyp Ref Expression
1 orvcval.1 φ Fun X
2 orvcval.2 φ X V
3 orvcval.3 φ A W
4 df-orvc RV/c R = x x | Fun x , a V x -1 y | y R a
5 4 a1i φ RV/c R = x x | Fun x , a V x -1 y | y R a
6 simpl x = X a = A x = X
7 6 cnveqd x = X a = A x -1 = X -1
8 simpr x = X a = A a = A
9 8 breq2d x = X a = A y R a y R A
10 9 abbidv x = X a = A y | y R a = y | y R A
11 7 10 imaeq12d x = X a = A x -1 y | y R a = X -1 y | y R A
12 11 adantl φ x = X a = A x -1 y | y R a = X -1 y | y R A
13 funeq x = X Fun x Fun X
14 2 1 13 elabd φ X x | Fun x
15 elex A W A V
16 3 15 syl φ A V
17 cnvexg X V X -1 V
18 imaexg X -1 V X -1 y | y R A V
19 2 17 18 3syl φ X -1 y | y R A V
20 5 12 14 16 19 ovmpod φ X R RV/c A = X -1 y | y R A