Metamath Proof Explorer


Theorem orvcval

Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1 φFunX
orvcval.2 φXV
orvcval.3 φAW
Assertion orvcval φXRRV/cA=X-1y|yRA

Proof

Step Hyp Ref Expression
1 orvcval.1 φFunX
2 orvcval.2 φXV
3 orvcval.3 φAW
4 df-orvc RV/cR=xx|Funx,aVx-1y|yRa
5 4 a1i φRV/cR=xx|Funx,aVx-1y|yRa
6 simpl x=Xa=Ax=X
7 6 cnveqd x=Xa=Ax-1=X-1
8 simpr x=Xa=Aa=A
9 8 breq2d x=Xa=AyRayRA
10 9 abbidv x=Xa=Ay|yRa=y|yRA
11 7 10 imaeq12d x=Xa=Ax-1y|yRa=X-1y|yRA
12 11 adantl φx=Xa=Ax-1y|yRa=X-1y|yRA
13 funeq x=XFunxFunX
14 2 1 13 elabd φXx|Funx
15 elex AWAV
16 3 15 syl φAV
17 cnvexg XVX-1V
18 imaexg X-1VX-1y|yRAV
19 2 17 18 3syl φX-1y|yRAV
20 5 12 14 16 19 ovmpod φXRRV/cA=X-1y|yRA