Step |
Hyp |
Ref |
Expression |
1 |
|
orvcval.1 |
|- ( ph -> Fun X ) |
2 |
|
orvcval.2 |
|- ( ph -> X e. V ) |
3 |
|
orvcval.3 |
|- ( ph -> A e. W ) |
4 |
|
df-orvc |
|- oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) ) |
5 |
4
|
a1i |
|- ( ph -> oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) ) ) |
6 |
|
simpl |
|- ( ( x = X /\ a = A ) -> x = X ) |
7 |
6
|
cnveqd |
|- ( ( x = X /\ a = A ) -> `' x = `' X ) |
8 |
|
simpr |
|- ( ( x = X /\ a = A ) -> a = A ) |
9 |
8
|
breq2d |
|- ( ( x = X /\ a = A ) -> ( y R a <-> y R A ) ) |
10 |
9
|
abbidv |
|- ( ( x = X /\ a = A ) -> { y | y R a } = { y | y R A } ) |
11 |
7 10
|
imaeq12d |
|- ( ( x = X /\ a = A ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ ( x = X /\ a = A ) ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) ) |
13 |
|
funeq |
|- ( x = X -> ( Fun x <-> Fun X ) ) |
14 |
2 1 13
|
elabd |
|- ( ph -> X e. { x | Fun x } ) |
15 |
|
elex |
|- ( A e. W -> A e. _V ) |
16 |
3 15
|
syl |
|- ( ph -> A e. _V ) |
17 |
|
cnvexg |
|- ( X e. V -> `' X e. _V ) |
18 |
|
imaexg |
|- ( `' X e. _V -> ( `' X " { y | y R A } ) e. _V ) |
19 |
2 17 18
|
3syl |
|- ( ph -> ( `' X " { y | y R A } ) e. _V ) |
20 |
5 12 14 16 19
|
ovmpod |
|- ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) ) |