Metamath Proof Explorer


Theorem orvcval

Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1
|- ( ph -> Fun X )
orvcval.2
|- ( ph -> X e. V )
orvcval.3
|- ( ph -> A e. W )
Assertion orvcval
|- ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) )

Proof

Step Hyp Ref Expression
1 orvcval.1
 |-  ( ph -> Fun X )
2 orvcval.2
 |-  ( ph -> X e. V )
3 orvcval.3
 |-  ( ph -> A e. W )
4 df-orvc
 |-  oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) )
5 4 a1i
 |-  ( ph -> oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) ) )
6 simpl
 |-  ( ( x = X /\ a = A ) -> x = X )
7 6 cnveqd
 |-  ( ( x = X /\ a = A ) -> `' x = `' X )
8 simpr
 |-  ( ( x = X /\ a = A ) -> a = A )
9 8 breq2d
 |-  ( ( x = X /\ a = A ) -> ( y R a <-> y R A ) )
10 9 abbidv
 |-  ( ( x = X /\ a = A ) -> { y | y R a } = { y | y R A } )
11 7 10 imaeq12d
 |-  ( ( x = X /\ a = A ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) )
12 11 adantl
 |-  ( ( ph /\ ( x = X /\ a = A ) ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) )
13 funeq
 |-  ( x = X -> ( Fun x <-> Fun X ) )
14 2 1 13 elabd
 |-  ( ph -> X e. { x | Fun x } )
15 elex
 |-  ( A e. W -> A e. _V )
16 3 15 syl
 |-  ( ph -> A e. _V )
17 cnvexg
 |-  ( X e. V -> `' X e. _V )
18 imaexg
 |-  ( `' X e. _V -> ( `' X " { y | y R A } ) e. _V )
19 2 17 18 3syl
 |-  ( ph -> ( `' X " { y | y R A } ) e. _V )
20 5 12 14 16 19 ovmpod
 |-  ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) )