| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcval.1 |  |-  ( ph -> Fun X ) | 
						
							| 2 |  | orvcval.2 |  |-  ( ph -> X e. V ) | 
						
							| 3 |  | orvcval.3 |  |-  ( ph -> A e. W ) | 
						
							| 4 |  | df-orvc |  |-  oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> oRVC R = ( x e. { x | Fun x } , a e. _V |-> ( `' x " { y | y R a } ) ) ) | 
						
							| 6 |  | simpl |  |-  ( ( x = X /\ a = A ) -> x = X ) | 
						
							| 7 | 6 | cnveqd |  |-  ( ( x = X /\ a = A ) -> `' x = `' X ) | 
						
							| 8 |  | simpr |  |-  ( ( x = X /\ a = A ) -> a = A ) | 
						
							| 9 | 8 | breq2d |  |-  ( ( x = X /\ a = A ) -> ( y R a <-> y R A ) ) | 
						
							| 10 | 9 | abbidv |  |-  ( ( x = X /\ a = A ) -> { y | y R a } = { y | y R A } ) | 
						
							| 11 | 7 10 | imaeq12d |  |-  ( ( x = X /\ a = A ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ ( x = X /\ a = A ) ) -> ( `' x " { y | y R a } ) = ( `' X " { y | y R A } ) ) | 
						
							| 13 |  | funeq |  |-  ( x = X -> ( Fun x <-> Fun X ) ) | 
						
							| 14 | 2 1 13 | elabd |  |-  ( ph -> X e. { x | Fun x } ) | 
						
							| 15 |  | elex |  |-  ( A e. W -> A e. _V ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> A e. _V ) | 
						
							| 17 |  | cnvexg |  |-  ( X e. V -> `' X e. _V ) | 
						
							| 18 |  | imaexg |  |-  ( `' X e. _V -> ( `' X " { y | y R A } ) e. _V ) | 
						
							| 19 | 2 17 18 | 3syl |  |-  ( ph -> ( `' X " { y | y R A } ) e. _V ) | 
						
							| 20 | 5 12 14 16 19 | ovmpod |  |-  ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) ) |