| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcval.1 |  |-  ( ph -> Fun X ) | 
						
							| 2 |  | orvcval.2 |  |-  ( ph -> X e. V ) | 
						
							| 3 |  | orvcval.3 |  |-  ( ph -> A e. W ) | 
						
							| 4 | 1 2 3 | orvcval |  |-  ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) ) | 
						
							| 5 |  | funfn |  |-  ( Fun X <-> X Fn dom X ) | 
						
							| 6 | 1 5 | sylib |  |-  ( ph -> X Fn dom X ) | 
						
							| 7 |  | fncnvima2 |  |-  ( X Fn dom X -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } ) | 
						
							| 9 |  | fvex |  |-  ( X ` z ) e. _V | 
						
							| 10 |  | breq1 |  |-  ( y = ( X ` z ) -> ( y R A <-> ( X ` z ) R A ) ) | 
						
							| 11 | 9 10 | elab |  |-  ( ( X ` z ) e. { y | y R A } <-> ( X ` z ) R A ) | 
						
							| 12 | 11 | rabbii |  |-  { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A } | 
						
							| 13 | 12 | a1i |  |-  ( ph -> { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A } ) | 
						
							| 14 | 4 8 13 | 3eqtrd |  |-  ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } ) |