| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orvcval.1 |
|- ( ph -> Fun X ) |
| 2 |
|
orvcval.2 |
|- ( ph -> X e. V ) |
| 3 |
|
orvcval.3 |
|- ( ph -> A e. W ) |
| 4 |
1 2 3
|
orvcval |
|- ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) ) |
| 5 |
|
funfn |
|- ( Fun X <-> X Fn dom X ) |
| 6 |
1 5
|
sylib |
|- ( ph -> X Fn dom X ) |
| 7 |
|
fncnvima2 |
|- ( X Fn dom X -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } ) |
| 9 |
|
fvex |
|- ( X ` z ) e. _V |
| 10 |
|
breq1 |
|- ( y = ( X ` z ) -> ( y R A <-> ( X ` z ) R A ) ) |
| 11 |
9 10
|
elab |
|- ( ( X ` z ) e. { y | y R A } <-> ( X ` z ) R A ) |
| 12 |
11
|
rabbii |
|- { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A } |
| 13 |
12
|
a1i |
|- ( ph -> { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A } ) |
| 14 |
4 8 13
|
3eqtrd |
|- ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } ) |