Metamath Proof Explorer


Theorem orvcval2

Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1
|- ( ph -> Fun X )
orvcval.2
|- ( ph -> X e. V )
orvcval.3
|- ( ph -> A e. W )
Assertion orvcval2
|- ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } )

Proof

Step Hyp Ref Expression
1 orvcval.1
 |-  ( ph -> Fun X )
2 orvcval.2
 |-  ( ph -> X e. V )
3 orvcval.3
 |-  ( ph -> A e. W )
4 1 2 3 orvcval
 |-  ( ph -> ( X oRVC R A ) = ( `' X " { y | y R A } ) )
5 funfn
 |-  ( Fun X <-> X Fn dom X )
6 1 5 sylib
 |-  ( ph -> X Fn dom X )
7 fncnvima2
 |-  ( X Fn dom X -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } )
8 6 7 syl
 |-  ( ph -> ( `' X " { y | y R A } ) = { z e. dom X | ( X ` z ) e. { y | y R A } } )
9 fvex
 |-  ( X ` z ) e. _V
10 breq1
 |-  ( y = ( X ` z ) -> ( y R A <-> ( X ` z ) R A ) )
11 9 10 elab
 |-  ( ( X ` z ) e. { y | y R A } <-> ( X ` z ) R A )
12 11 rabbii
 |-  { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A }
13 12 a1i
 |-  ( ph -> { z e. dom X | ( X ` z ) e. { y | y R A } } = { z e. dom X | ( X ` z ) R A } )
14 4 8 13 3eqtrd
 |-  ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } )