Metamath Proof Explorer


Theorem elorvc

Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orvcval.1
|- ( ph -> Fun X )
orvcval.2
|- ( ph -> X e. V )
orvcval.3
|- ( ph -> A e. W )
Assertion elorvc
|- ( ( ph /\ z e. dom X ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) )

Proof

Step Hyp Ref Expression
1 orvcval.1
 |-  ( ph -> Fun X )
2 orvcval.2
 |-  ( ph -> X e. V )
3 orvcval.3
 |-  ( ph -> A e. W )
4 1 2 3 orvcval2
 |-  ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } )
5 4 eleq2d
 |-  ( ph -> ( z e. ( X oRVC R A ) <-> z e. { z e. dom X | ( X ` z ) R A } ) )
6 rabid
 |-  ( z e. { z e. dom X | ( X ` z ) R A } <-> ( z e. dom X /\ ( X ` z ) R A ) )
7 5 6 bitrdi
 |-  ( ph -> ( z e. ( X oRVC R A ) <-> ( z e. dom X /\ ( X ` z ) R A ) ) )
8 7 baibd
 |-  ( ( ph /\ z e. dom X ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) )