Step |
Hyp |
Ref |
Expression |
1 |
|
orvcval.1 |
|- ( ph -> Fun X ) |
2 |
|
orvcval.2 |
|- ( ph -> X e. V ) |
3 |
|
orvcval.3 |
|- ( ph -> A e. W ) |
4 |
1 2 3
|
orvcval2 |
|- ( ph -> ( X oRVC R A ) = { z e. dom X | ( X ` z ) R A } ) |
5 |
4
|
eleq2d |
|- ( ph -> ( z e. ( X oRVC R A ) <-> z e. { z e. dom X | ( X ` z ) R A } ) ) |
6 |
|
rabid |
|- ( z e. { z e. dom X | ( X ` z ) R A } <-> ( z e. dom X /\ ( X ` z ) R A ) ) |
7 |
5 6
|
bitrdi |
|- ( ph -> ( z e. ( X oRVC R A ) <-> ( z e. dom X /\ ( X ` z ) R A ) ) ) |
8 |
7
|
baibd |
|- ( ( ph /\ z e. dom X ) -> ( z e. ( X oRVC R A ) <-> ( X ` z ) R A ) ) |