Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orvcval.1 | ⊢ ( 𝜑 → Fun 𝑋 ) | |
| orvcval.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| orvcval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| Assertion | elorvc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ dom 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) ↔ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orvcval.1 | ⊢ ( 𝜑 → Fun 𝑋 ) | |
| 2 | orvcval.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 3 | orvcval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 4 | 1 2 3 | orvcval2 | ⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) | 
| 5 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) ↔ 𝑧 ∈ { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) ) | 
| 6 | rabid | ⊢ ( 𝑧 ∈ { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ↔ ( 𝑧 ∈ dom 𝑋 ∧ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) ↔ ( 𝑧 ∈ dom 𝑋 ∧ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) ) | 
| 8 | 7 | baibd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ dom 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) ↔ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) |