Step |
Hyp |
Ref |
Expression |
1 |
|
orvccel.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
2 |
|
orvccel.2 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
3 |
|
orvccel.3 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 MblFnM ( sigaGen ‘ 𝐽 ) ) ) |
4 |
|
orvccel.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
2
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
6 |
1 5 3
|
isanmbfm |
⊢ ( 𝜑 → 𝑋 ∈ ∪ ran MblFnM ) |
7 |
6
|
mbfmfun |
⊢ ( 𝜑 → Fun 𝑋 ) |
8 |
1 5 3
|
mbfmf |
⊢ ( 𝜑 → 𝑋 : ∪ 𝑆 ⟶ ∪ ( sigaGen ‘ 𝐽 ) ) |
9 |
|
elex |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ V ) |
10 |
|
unisg |
⊢ ( 𝐽 ∈ V → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
11 |
2 9 10
|
3syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
12 |
11
|
feq3d |
⊢ ( 𝜑 → ( 𝑋 : ∪ 𝑆 ⟶ ∪ ( sigaGen ‘ 𝐽 ) ↔ 𝑋 : ∪ 𝑆 ⟶ ∪ 𝐽 ) ) |
13 |
8 12
|
mpbid |
⊢ ( 𝜑 → 𝑋 : ∪ 𝑆 ⟶ ∪ 𝐽 ) |
14 |
13
|
frnd |
⊢ ( 𝜑 → ran 𝑋 ⊆ ∪ 𝐽 ) |
15 |
|
fimacnvinrn2 |
⊢ ( ( Fun 𝑋 ∧ ran 𝑋 ⊆ ∪ 𝐽 ) → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) = ( ◡ 𝑋 “ ( { 𝑦 ∣ 𝑦 𝑅 𝐴 } ∩ ∪ 𝐽 ) ) ) |
16 |
7 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) = ( ◡ 𝑋 “ ( { 𝑦 ∣ 𝑦 𝑅 𝐴 } ∩ ∪ 𝐽 ) ) ) |
17 |
7 3 4
|
orvcval |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ) |
18 |
|
dfrab2 |
⊢ { 𝑦 ∈ ∪ 𝐽 ∣ 𝑦 𝑅 𝐴 } = ( { 𝑦 ∣ 𝑦 𝑅 𝐴 } ∩ ∪ 𝐽 ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ ∪ 𝐽 ∣ 𝑦 𝑅 𝐴 } = ( { 𝑦 ∣ 𝑦 𝑅 𝐴 } ∩ ∪ 𝐽 ) ) |
20 |
19
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑦 ∈ ∪ 𝐽 ∣ 𝑦 𝑅 𝐴 } ) = ( ◡ 𝑋 “ ( { 𝑦 ∣ 𝑦 𝑅 𝐴 } ∩ ∪ 𝐽 ) ) ) |
21 |
16 17 20
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = ( ◡ 𝑋 “ { 𝑦 ∈ ∪ 𝐽 ∣ 𝑦 𝑅 𝐴 } ) ) |