Metamath Proof Explorer


Theorem orvcval4

Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orvccel.1 ( 𝜑𝑆 ran sigAlgebra )
orvccel.2 ( 𝜑𝐽 ∈ Top )
orvccel.3 ( 𝜑𝑋 ∈ ( 𝑆 MblFnM ( sigaGen ‘ 𝐽 ) ) )
orvccel.4 ( 𝜑𝐴𝑉 )
Assertion orvcval4 ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦 𝐽𝑦 𝑅 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 orvccel.1 ( 𝜑𝑆 ran sigAlgebra )
2 orvccel.2 ( 𝜑𝐽 ∈ Top )
3 orvccel.3 ( 𝜑𝑋 ∈ ( 𝑆 MblFnM ( sigaGen ‘ 𝐽 ) ) )
4 orvccel.4 ( 𝜑𝐴𝑉 )
5 2 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
6 1 5 3 isanmbfm ( 𝜑𝑋 ran MblFnM )
7 6 mbfmfun ( 𝜑 → Fun 𝑋 )
8 1 5 3 mbfmf ( 𝜑𝑋 : 𝑆 ( sigaGen ‘ 𝐽 ) )
9 elex ( 𝐽 ∈ Top → 𝐽 ∈ V )
10 unisg ( 𝐽 ∈ V → ( sigaGen ‘ 𝐽 ) = 𝐽 )
11 2 9 10 3syl ( 𝜑 ( sigaGen ‘ 𝐽 ) = 𝐽 )
12 11 feq3d ( 𝜑 → ( 𝑋 : 𝑆 ( sigaGen ‘ 𝐽 ) ↔ 𝑋 : 𝑆 𝐽 ) )
13 8 12 mpbid ( 𝜑𝑋 : 𝑆 𝐽 )
14 13 frnd ( 𝜑 → ran 𝑋 𝐽 )
15 fimacnvinrn2 ( ( Fun 𝑋 ∧ ran 𝑋 𝐽 ) → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) = ( 𝑋 “ ( { 𝑦𝑦 𝑅 𝐴 } ∩ 𝐽 ) ) )
16 7 14 15 syl2anc ( 𝜑 → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) = ( 𝑋 “ ( { 𝑦𝑦 𝑅 𝐴 } ∩ 𝐽 ) ) )
17 7 3 4 orvcval ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )
18 dfrab2 { 𝑦 𝐽𝑦 𝑅 𝐴 } = ( { 𝑦𝑦 𝑅 𝐴 } ∩ 𝐽 )
19 18 a1i ( 𝜑 → { 𝑦 𝐽𝑦 𝑅 𝐴 } = ( { 𝑦𝑦 𝑅 𝐴 } ∩ 𝐽 ) )
20 19 imaeq2d ( 𝜑 → ( 𝑋 “ { 𝑦 𝐽𝑦 𝑅 𝐴 } ) = ( 𝑋 “ ( { 𝑦𝑦 𝑅 𝐴 } ∩ 𝐽 ) ) )
21 16 17 20 3eqtr4d ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦 𝐽𝑦 𝑅 𝐴 } ) )