| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvccel.1 | ⊢ ( 𝜑  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 2 |  | orvccel.2 | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 3 |  | orvccel.3 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑆 MblFnM ( sigaGen ‘ 𝐽 ) ) ) | 
						
							| 4 |  | orvccel.4 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 | 3 | isanmbfm | ⊢ ( 𝜑  →  𝑋  ∈  ∪  ran  MblFnM ) | 
						
							| 6 | 5 | mbfmfun | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 7 | 2 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ 𝐽 )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 8 | 1 7 3 | mbfmf | ⊢ ( 𝜑  →  𝑋 : ∪  𝑆 ⟶ ∪  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 9 |  | elex | ⊢ ( 𝐽  ∈  Top  →  𝐽  ∈  V ) | 
						
							| 10 |  | unisg | ⊢ ( 𝐽  ∈  V  →  ∪  ( sigaGen ‘ 𝐽 )  =  ∪  𝐽 ) | 
						
							| 11 | 2 9 10 | 3syl | ⊢ ( 𝜑  →  ∪  ( sigaGen ‘ 𝐽 )  =  ∪  𝐽 ) | 
						
							| 12 | 11 | feq3d | ⊢ ( 𝜑  →  ( 𝑋 : ∪  𝑆 ⟶ ∪  ( sigaGen ‘ 𝐽 )  ↔  𝑋 : ∪  𝑆 ⟶ ∪  𝐽 ) ) | 
						
							| 13 | 8 12 | mpbid | ⊢ ( 𝜑  →  𝑋 : ∪  𝑆 ⟶ ∪  𝐽 ) | 
						
							| 14 | 13 | frnd | ⊢ ( 𝜑  →  ran  𝑋  ⊆  ∪  𝐽 ) | 
						
							| 15 |  | fimacnvinrn2 | ⊢ ( ( Fun  𝑋  ∧  ran  𝑋  ⊆  ∪  𝐽 )  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  =  ( ◡ 𝑋  “  ( { 𝑦  ∣  𝑦 𝑅 𝐴 }  ∩  ∪  𝐽 ) ) ) | 
						
							| 16 | 6 14 15 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  =  ( ◡ 𝑋  “  ( { 𝑦  ∣  𝑦 𝑅 𝐴 }  ∩  ∪  𝐽 ) ) ) | 
						
							| 17 | 6 3 4 | orvcval | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) ) | 
						
							| 18 |  | dfrab2 | ⊢ { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 }  =  ( { 𝑦  ∣  𝑦 𝑅 𝐴 }  ∩  ∪  𝐽 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 }  =  ( { 𝑦  ∣  𝑦 𝑅 𝐴 }  ∩  ∪  𝐽 ) ) | 
						
							| 20 | 19 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 } )  =  ( ◡ 𝑋  “  ( { 𝑦  ∣  𝑦 𝑅 𝐴 }  ∩  ∪  𝐽 ) ) ) | 
						
							| 21 | 16 17 20 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  ( ◡ 𝑋  “  { 𝑦  ∈  ∪  𝐽  ∣  𝑦 𝑅 𝐴 } ) ) |