Metamath Proof Explorer


Theorem orvcval4

Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orvccel.1 φSransigAlgebra
orvccel.2 φJTop
orvccel.3 φXSMblFnμ𝛔J
orvccel.4 φAV
Assertion orvcval4 φXRRV/cA=X-1yJ|yRA

Proof

Step Hyp Ref Expression
1 orvccel.1 φSransigAlgebra
2 orvccel.2 φJTop
3 orvccel.3 φXSMblFnμ𝛔J
4 orvccel.4 φAV
5 3 isanmbfm φXranMblFnμ
6 5 mbfmfun φFunX
7 2 sgsiga φ𝛔JransigAlgebra
8 1 7 3 mbfmf φX:S𝛔J
9 elex JTopJV
10 unisg JV𝛔J=J
11 2 9 10 3syl φ𝛔J=J
12 11 feq3d φX:S𝛔JX:SJ
13 8 12 mpbid φX:SJ
14 13 frnd φranXJ
15 fimacnvinrn2 FunXranXJX-1y|yRA=X-1y|yRAJ
16 6 14 15 syl2anc φX-1y|yRA=X-1y|yRAJ
17 6 3 4 orvcval φXRRV/cA=X-1y|yRA
18 dfrab2 yJ|yRA=y|yRAJ
19 18 a1i φyJ|yRA=y|yRAJ
20 19 imaeq2d φX-1yJ|yRA=X-1y|yRAJ
21 16 17 20 3eqtr4d φXRRV/cA=X-1yJ|yRA