Step |
Hyp |
Ref |
Expression |
1 |
|
orvcval.1 |
⊢ ( 𝜑 → Fun 𝑋 ) |
2 |
|
orvcval.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
3 |
|
orvcval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) |
4 |
|
df-orvc |
⊢ ∘RV/𝑐 𝑅 = ( 𝑥 ∈ { 𝑥 ∣ Fun 𝑥 } , 𝑎 ∈ V ↦ ( ◡ 𝑥 “ { 𝑦 ∣ 𝑦 𝑅 𝑎 } ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ∘RV/𝑐 𝑅 = ( 𝑥 ∈ { 𝑥 ∣ Fun 𝑥 } , 𝑎 ∈ V ↦ ( ◡ 𝑥 “ { 𝑦 ∣ 𝑦 𝑅 𝑎 } ) ) ) |
6 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → 𝑥 = 𝑋 ) |
7 |
6
|
cnveqd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → ◡ 𝑥 = ◡ 𝑋 ) |
8 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
9 |
8
|
breq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → ( 𝑦 𝑅 𝑎 ↔ 𝑦 𝑅 𝐴 ) ) |
10 |
9
|
abbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → { 𝑦 ∣ 𝑦 𝑅 𝑎 } = { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) |
11 |
7 10
|
imaeq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) → ( ◡ 𝑥 “ { 𝑦 ∣ 𝑦 𝑅 𝑎 } ) = ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑎 = 𝐴 ) ) → ( ◡ 𝑥 “ { 𝑦 ∣ 𝑦 𝑅 𝑎 } ) = ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ) |
13 |
|
funeq |
⊢ ( 𝑥 = 𝑋 → ( Fun 𝑥 ↔ Fun 𝑋 ) ) |
14 |
2 1 13
|
elabd |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∣ Fun 𝑥 } ) |
15 |
|
elex |
⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
17 |
|
cnvexg |
⊢ ( 𝑋 ∈ 𝑉 → ◡ 𝑋 ∈ V ) |
18 |
|
imaexg |
⊢ ( ◡ 𝑋 ∈ V → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ∈ V ) |
19 |
2 17 18
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ∈ V ) |
20 |
5 12 14 16 19
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ) |