Metamath Proof Explorer


Theorem orvcval

Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1 ( 𝜑 → Fun 𝑋 )
orvcval.2 ( 𝜑𝑋𝑉 )
orvcval.3 ( 𝜑𝐴𝑊 )
Assertion orvcval ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 orvcval.1 ( 𝜑 → Fun 𝑋 )
2 orvcval.2 ( 𝜑𝑋𝑉 )
3 orvcval.3 ( 𝜑𝐴𝑊 )
4 df-orvc RV/𝑐 𝑅 = ( 𝑥 ∈ { 𝑥 ∣ Fun 𝑥 } , 𝑎 ∈ V ↦ ( 𝑥 “ { 𝑦𝑦 𝑅 𝑎 } ) )
5 4 a1i ( 𝜑 → ∘RV/𝑐 𝑅 = ( 𝑥 ∈ { 𝑥 ∣ Fun 𝑥 } , 𝑎 ∈ V ↦ ( 𝑥 “ { 𝑦𝑦 𝑅 𝑎 } ) ) )
6 simpl ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → 𝑥 = 𝑋 )
7 6 cnveqd ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → 𝑥 = 𝑋 )
8 simpr ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → 𝑎 = 𝐴 )
9 8 breq2d ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → ( 𝑦 𝑅 𝑎𝑦 𝑅 𝐴 ) )
10 9 abbidv ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → { 𝑦𝑦 𝑅 𝑎 } = { 𝑦𝑦 𝑅 𝐴 } )
11 7 10 imaeq12d ( ( 𝑥 = 𝑋𝑎 = 𝐴 ) → ( 𝑥 “ { 𝑦𝑦 𝑅 𝑎 } ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )
12 11 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑎 = 𝐴 ) ) → ( 𝑥 “ { 𝑦𝑦 𝑅 𝑎 } ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )
13 funeq ( 𝑥 = 𝑋 → ( Fun 𝑥 ↔ Fun 𝑋 ) )
14 2 1 13 elabd ( 𝜑𝑋 ∈ { 𝑥 ∣ Fun 𝑥 } )
15 elex ( 𝐴𝑊𝐴 ∈ V )
16 3 15 syl ( 𝜑𝐴 ∈ V )
17 cnvexg ( 𝑋𝑉 𝑋 ∈ V )
18 imaexg ( 𝑋 ∈ V → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) ∈ V )
19 2 17 18 3syl ( 𝜑 → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) ∈ V )
20 5 12 14 16 19 ovmpod ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )