| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcval.1 | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 2 |  | orvcval.2 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 3 |  | orvcval.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑊 ) | 
						
							| 4 |  | df-orvc | ⊢ ∘RV/𝑐 𝑅  =  ( 𝑥  ∈  { 𝑥  ∣  Fun  𝑥 } ,  𝑎  ∈  V  ↦  ( ◡ 𝑥  “  { 𝑦  ∣  𝑦 𝑅 𝑎 } ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ∘RV/𝑐 𝑅  =  ( 𝑥  ∈  { 𝑥  ∣  Fun  𝑥 } ,  𝑎  ∈  V  ↦  ( ◡ 𝑥  “  { 𝑦  ∣  𝑦 𝑅 𝑎 } ) ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  𝑥  =  𝑋 ) | 
						
							| 7 | 6 | cnveqd | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  ◡ 𝑥  =  ◡ 𝑋 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  𝑎  =  𝐴 ) | 
						
							| 9 | 8 | breq2d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  ( 𝑦 𝑅 𝑎  ↔  𝑦 𝑅 𝐴 ) ) | 
						
							| 10 | 9 | abbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  { 𝑦  ∣  𝑦 𝑅 𝑎 }  =  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) | 
						
							| 11 | 7 10 | imaeq12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 )  →  ( ◡ 𝑥  “  { 𝑦  ∣  𝑦 𝑅 𝑎 } )  =  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑎  =  𝐴 ) )  →  ( ◡ 𝑥  “  { 𝑦  ∣  𝑦 𝑅 𝑎 } )  =  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) ) | 
						
							| 13 |  | funeq | ⊢ ( 𝑥  =  𝑋  →  ( Fun  𝑥  ↔  Fun  𝑋 ) ) | 
						
							| 14 | 2 1 13 | elabd | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑥  ∣  Fun  𝑥 } ) | 
						
							| 15 |  | elex | ⊢ ( 𝐴  ∈  𝑊  →  𝐴  ∈  V ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 17 |  | cnvexg | ⊢ ( 𝑋  ∈  𝑉  →  ◡ 𝑋  ∈  V ) | 
						
							| 18 |  | imaexg | ⊢ ( ◡ 𝑋  ∈  V  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  ∈  V ) | 
						
							| 19 | 2 17 18 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  ∈  V ) | 
						
							| 20 | 5 12 14 16 19 | ovmpod | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) ) |