| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orvcval.1 | ⊢ ( 𝜑  →  Fun  𝑋 ) | 
						
							| 2 |  | orvcval.2 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 3 |  | orvcval.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑊 ) | 
						
							| 4 | 1 2 3 | orvcval | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } ) ) | 
						
							| 5 |  | funfn | ⊢ ( Fun  𝑋  ↔  𝑋  Fn  dom  𝑋 ) | 
						
							| 6 | 1 5 | sylib | ⊢ ( 𝜑  →  𝑋  Fn  dom  𝑋 ) | 
						
							| 7 |  | fncnvima2 | ⊢ ( 𝑋  Fn  dom  𝑋  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  =  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 )  ∈  { 𝑦  ∣  𝑦 𝑅 𝐴 } } ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  { 𝑦  ∣  𝑦 𝑅 𝐴 } )  =  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 )  ∈  { 𝑦  ∣  𝑦 𝑅 𝐴 } } ) | 
						
							| 9 |  | fvex | ⊢ ( 𝑋 ‘ 𝑧 )  ∈  V | 
						
							| 10 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑋 ‘ 𝑧 )  →  ( 𝑦 𝑅 𝐴  ↔  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) | 
						
							| 11 | 9 10 | elab | ⊢ ( ( 𝑋 ‘ 𝑧 )  ∈  { 𝑦  ∣  𝑦 𝑅 𝐴 }  ↔  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) | 
						
							| 12 | 11 | rabbii | ⊢ { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 )  ∈  { 𝑦  ∣  𝑦 𝑅 𝐴 } }  =  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 )  ∈  { 𝑦  ∣  𝑦 𝑅 𝐴 } }  =  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) | 
						
							| 14 | 4 8 13 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑋 ∘RV/𝑐 𝑅 𝐴 )  =  { 𝑧  ∈  dom  𝑋  ∣  ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) |