Metamath Proof Explorer


Theorem orvcval2

Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017)

Ref Expression
Hypotheses orvcval.1 ( 𝜑 → Fun 𝑋 )
orvcval.2 ( 𝜑𝑋𝑉 )
orvcval.3 ( 𝜑𝐴𝑊 )
Assertion orvcval2 ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) 𝑅 𝐴 } )

Proof

Step Hyp Ref Expression
1 orvcval.1 ( 𝜑 → Fun 𝑋 )
2 orvcval.2 ( 𝜑𝑋𝑉 )
3 orvcval.3 ( 𝜑𝐴𝑊 )
4 1 2 3 orvcval ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) )
5 funfn ( Fun 𝑋𝑋 Fn dom 𝑋 )
6 1 5 sylib ( 𝜑𝑋 Fn dom 𝑋 )
7 fncnvima2 ( 𝑋 Fn dom 𝑋 → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) ∈ { 𝑦𝑦 𝑅 𝐴 } } )
8 6 7 syl ( 𝜑 → ( 𝑋 “ { 𝑦𝑦 𝑅 𝐴 } ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) ∈ { 𝑦𝑦 𝑅 𝐴 } } )
9 fvex ( 𝑋𝑧 ) ∈ V
10 breq1 ( 𝑦 = ( 𝑋𝑧 ) → ( 𝑦 𝑅 𝐴 ↔ ( 𝑋𝑧 ) 𝑅 𝐴 ) )
11 9 10 elab ( ( 𝑋𝑧 ) ∈ { 𝑦𝑦 𝑅 𝐴 } ↔ ( 𝑋𝑧 ) 𝑅 𝐴 )
12 11 rabbii { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) ∈ { 𝑦𝑦 𝑅 𝐴 } } = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) 𝑅 𝐴 }
13 12 a1i ( 𝜑 → { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) ∈ { 𝑦𝑦 𝑅 𝐴 } } = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) 𝑅 𝐴 } )
14 4 8 13 3eqtrd ( 𝜑 → ( 𝑋RV/𝑐 𝑅 𝐴 ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋𝑧 ) 𝑅 𝐴 } )