| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orvcval.1 |
⊢ ( 𝜑 → Fun 𝑋 ) |
| 2 |
|
orvcval.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 3 |
|
orvcval.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) |
| 4 |
1 2 3
|
orvcval |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) ) |
| 5 |
|
funfn |
⊢ ( Fun 𝑋 ↔ 𝑋 Fn dom 𝑋 ) |
| 6 |
1 5
|
sylib |
⊢ ( 𝜑 → 𝑋 Fn dom 𝑋 ) |
| 7 |
|
fncnvima2 |
⊢ ( 𝑋 Fn dom 𝑋 → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) ∈ { 𝑦 ∣ 𝑦 𝑅 𝐴 } } ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑋 “ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) ∈ { 𝑦 ∣ 𝑦 𝑅 𝐴 } } ) |
| 9 |
|
fvex |
⊢ ( 𝑋 ‘ 𝑧 ) ∈ V |
| 10 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑋 ‘ 𝑧 ) → ( 𝑦 𝑅 𝐴 ↔ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) ) |
| 11 |
9 10
|
elab |
⊢ ( ( 𝑋 ‘ 𝑧 ) ∈ { 𝑦 ∣ 𝑦 𝑅 𝐴 } ↔ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 ) |
| 12 |
11
|
rabbii |
⊢ { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) ∈ { 𝑦 ∣ 𝑦 𝑅 𝐴 } } = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) ∈ { 𝑦 ∣ 𝑦 𝑅 𝐴 } } = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) |
| 14 |
4 8 13
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∘RV/𝑐 𝑅 𝐴 ) = { 𝑧 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑧 ) 𝑅 𝐴 } ) |