Metamath Proof Explorer


Definition df-pellfund

Description: A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion df-pellfund PellFund=xsupzPell14QRx|1<z<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpellfund classPellFund
1 vx setvarx
2 cn class
3 csquarenn class
4 2 3 cdif class
5 vz setvarz
6 cpell14qr classPell14QR
7 1 cv setvarx
8 7 6 cfv classPell14QRx
9 c1 class1
10 clt class<
11 5 cv setvarz
12 9 11 10 wbr wff1<z
13 12 5 8 crab classzPell14QRx|1<z
14 cr class
15 13 14 10 cinf classsupzPell14QRx|1<z<
16 1 4 15 cmpt classxsupzPell14QRx|1<z<
17 0 16 wceq wffPellFund=xsupzPell14QRx|1<z<