Metamath Proof Explorer


Definition df-plig

Description: Define the class of planar incidence geometries. We use Hilbert's axioms and adapt them to planar geometry. We use e. for the incidence relation. We could have used a generic binary relation, but using e. allows to reuse previous results. Much of what follows is directly borrowed from Aitken,Incidence-Betweenness Geometry, 2008, http://public.csusm.edu/aitken_html/m410/betweenness.08.pdf .

The class Plig is the class of planar incidence geometries, where a planar incidence geometry is defined as a set of lines satisfying three axioms. In the definition below, x denotes a planar incidence geometry, so U. x denotes the union of its lines, that is, the set of points in the plane, l denotes a line, and a , b , c denote points. Therefore, the axioms are: 1) for all pairs of (distinct) points, there exists a unique line containing them; 2) all lines contain at least two points; 3) there exist three non-collinear points. (Contributed by FL, 2-Aug-2009)

Ref Expression
Assertion df-plig Plig=x|axbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblcl

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplig classPlig
1 vx setvarx
2 va setvara
3 1 cv setvarx
4 3 cuni classx
5 vb setvarb
6 2 cv setvara
7 5 cv setvarb
8 6 7 wne wffab
9 vl setvarl
10 9 cv setvarl
11 6 10 wcel wffal
12 7 10 wcel wffbl
13 11 12 wa wffalbl
14 13 9 3 wreu wff∃!lxalbl
15 8 14 wi wffab∃!lxalbl
16 15 5 4 wral wffbxab∃!lxalbl
17 16 2 4 wral wffaxbxab∃!lxalbl
18 8 11 12 w3a wffabalbl
19 18 5 4 wrex wffbxabalbl
20 19 2 4 wrex wffaxbxabalbl
21 20 9 3 wral wfflxaxbxabalbl
22 vc setvarc
23 22 cv setvarc
24 23 10 wcel wffcl
25 11 12 24 w3a wffalblcl
26 25 wn wff¬alblcl
27 26 9 3 wral wfflx¬alblcl
28 27 22 4 wrex wffcxlx¬alblcl
29 28 5 4 wrex wffbxcxlx¬alblcl
30 29 2 4 wrex wffaxbxcxlx¬alblcl
31 17 21 30 w3a wffaxbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblcl
32 31 1 cab classx|axbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblcl
33 0 32 wceq wffPlig=x|axbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblcl