Metamath Proof Explorer


Theorem isplig

Description: The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009)

Ref Expression
Hypothesis isplig.1 P = G
Assertion isplig G A G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l

Proof

Step Hyp Ref Expression
1 isplig.1 P = G
2 unieq x = G x = G
3 2 1 eqtr4di x = G x = P
4 reueq1 x = G ∃! l x a l b l ∃! l G a l b l
5 4 imbi2d x = G a b ∃! l x a l b l a b ∃! l G a l b l
6 3 5 raleqbidv x = G b x a b ∃! l x a l b l b P a b ∃! l G a l b l
7 3 6 raleqbidv x = G a x b x a b ∃! l x a l b l a P b P a b ∃! l G a l b l
8 3 rexeqdv x = G b x a b a l b l b P a b a l b l
9 3 8 rexeqbidv x = G a x b x a b a l b l a P b P a b a l b l
10 9 raleqbi1dv x = G l x a x b x a b a l b l l G a P b P a b a l b l
11 raleq x = G l x ¬ a l b l c l l G ¬ a l b l c l
12 3 11 rexeqbidv x = G c x l x ¬ a l b l c l c P l G ¬ a l b l c l
13 3 12 rexeqbidv x = G b x c x l x ¬ a l b l c l b P c P l G ¬ a l b l c l
14 3 13 rexeqbidv x = G a x b x c x l x ¬ a l b l c l a P b P c P l G ¬ a l b l c l
15 7 10 14 3anbi123d x = G a x b x a b ∃! l x a l b l l x a x b x a b a l b l a x b x c x l x ¬ a l b l c l a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
16 df-plig Plig = x | a x b x a b ∃! l x a l b l l x a x b x a b a l b l a x b x c x l x ¬ a l b l c l
17 15 16 elab2g G A G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l