Metamath Proof Explorer


Theorem ispligb

Description: The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021)

Ref Expression
Hypothesis isplig.1 P = G
Assertion ispligb G Plig G V a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l

Proof

Step Hyp Ref Expression
1 isplig.1 P = G
2 elex G Plig G V
3 1 isplig G V G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
4 2 3 biadanii G Plig G V a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l