Database
GUIDES AND MISCELLANEA
(Future - to be reviewed and classified)
Planar incidence geometry
ispligb
Next ⟩
tncp
Metamath Proof Explorer
Ascii
Unicode
Theorem
ispligb
Description:
The predicate "is a planar incidence geometry".
(Contributed by
BJ
, 2-Dec-2021)
Ref
Expression
Hypothesis
isplig.1
⊢
P
=
⋃
G
Assertion
ispligb
⊢
G
∈
Plig
↔
G
∈
V
∧
∀
a
∈
P
∀
b
∈
P
a
≠
b
→
∃!
l
∈
G
a
∈
l
∧
b
∈
l
∧
∀
l
∈
G
∃
a
∈
P
∃
b
∈
P
a
≠
b
∧
a
∈
l
∧
b
∈
l
∧
∃
a
∈
P
∃
b
∈
P
∃
c
∈
P
∀
l
∈
G
¬
a
∈
l
∧
b
∈
l
∧
c
∈
l
Proof
Step
Hyp
Ref
Expression
1
isplig.1
⊢
P
=
⋃
G
2
elex
⊢
G
∈
Plig
→
G
∈
V
3
1
isplig
⊢
G
∈
V
→
G
∈
Plig
↔
∀
a
∈
P
∀
b
∈
P
a
≠
b
→
∃!
l
∈
G
a
∈
l
∧
b
∈
l
∧
∀
l
∈
G
∃
a
∈
P
∃
b
∈
P
a
≠
b
∧
a
∈
l
∧
b
∈
l
∧
∃
a
∈
P
∃
b
∈
P
∃
c
∈
P
∀
l
∈
G
¬
a
∈
l
∧
b
∈
l
∧
c
∈
l
4
2
3
biadanii
⊢
G
∈
Plig
↔
G
∈
V
∧
∀
a
∈
P
∀
b
∈
P
a
≠
b
→
∃!
l
∈
G
a
∈
l
∧
b
∈
l
∧
∀
l
∈
G
∃
a
∈
P
∃
b
∈
P
a
≠
b
∧
a
∈
l
∧
b
∈
l
∧
∃
a
∈
P
∃
b
∈
P
∃
c
∈
P
∀
l
∈
G
¬
a
∈
l
∧
b
∈
l
∧
c
∈
l