Metamath Proof Explorer


Theorem ispligb

Description: The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021)

Ref Expression
Hypothesis isplig.1 𝑃 = 𝐺
Assertion ispligb ( 𝐺 ∈ Plig ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏 → ∃! 𝑙𝐺 ( 𝑎𝑙𝑏𝑙 ) ) ∧ ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ∧ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ ( 𝑎𝑙𝑏𝑙𝑐𝑙 ) ) ) )

Proof

Step Hyp Ref Expression
1 isplig.1 𝑃 = 𝐺
2 elex ( 𝐺 ∈ Plig → 𝐺 ∈ V )
3 1 isplig ( 𝐺 ∈ V → ( 𝐺 ∈ Plig ↔ ( ∀ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏 → ∃! 𝑙𝐺 ( 𝑎𝑙𝑏𝑙 ) ) ∧ ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ∧ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ ( 𝑎𝑙𝑏𝑙𝑐𝑙 ) ) ) )
4 2 3 biadanii ( 𝐺 ∈ Plig ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏 → ∃! 𝑙𝐺 ( 𝑎𝑙𝑏𝑙 ) ) ∧ ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ∧ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ ( 𝑎𝑙𝑏𝑙𝑐𝑙 ) ) ) )