Step |
Hyp |
Ref |
Expression |
1 |
|
tncp.1 |
⊢ 𝑃 = ∪ 𝐺 |
2 |
1
|
isplig |
⊢ ( 𝐺 ∈ Plig → ( 𝐺 ∈ Plig ↔ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝐺 ∈ Plig → ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
4 |
3
|
simp3d |
⊢ ( 𝐺 ∈ Plig → ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) |