Metamath Proof Explorer


Theorem l2p

Description: For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021)

Ref Expression
Hypothesis l2p.1 𝑃 = 𝐺
Assertion l2p ( ( 𝐺 ∈ Plig ∧ 𝐿𝐺 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) )

Proof

Step Hyp Ref Expression
1 l2p.1 𝑃 = 𝐺
2 1 isplig ( 𝐺 ∈ Plig → ( 𝐺 ∈ Plig ↔ ( ∀ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏 → ∃! 𝑙𝐺 ( 𝑎𝑙𝑏𝑙 ) ) ∧ ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ∧ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ ( 𝑎𝑙𝑏𝑙𝑐𝑙 ) ) ) )
3 eleq2 ( 𝑙 = 𝐿 → ( 𝑎𝑙𝑎𝐿 ) )
4 eleq2 ( 𝑙 = 𝐿 → ( 𝑏𝑙𝑏𝐿 ) )
5 3 4 3anbi23d ( 𝑙 = 𝐿 → ( ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ↔ ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) )
6 5 2rexbidv ( 𝑙 = 𝐿 → ( ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ↔ ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) )
7 6 rspccv ( ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) → ( 𝐿𝐺 → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) )
8 7 3ad2ant2 ( ( ∀ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏 → ∃! 𝑙𝐺 ( 𝑎𝑙𝑏𝑙 ) ) ∧ ∀ 𝑙𝐺𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝑙𝑏𝑙 ) ∧ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ ( 𝑎𝑙𝑏𝑙𝑐𝑙 ) ) → ( 𝐿𝐺 → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) )
9 2 8 syl6bi ( 𝐺 ∈ Plig → ( 𝐺 ∈ Plig → ( 𝐿𝐺 → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) ) )
10 9 pm2.43i ( 𝐺 ∈ Plig → ( 𝐿𝐺 → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) ) )
11 10 imp ( ( 𝐺 ∈ Plig ∧ 𝐿𝐺 ) → ∃ 𝑎𝑃𝑏𝑃 ( 𝑎𝑏𝑎𝐿𝑏𝐿 ) )