| Step | Hyp | Ref | Expression | 
						
							| 1 |  | l2p.1 | ⊢ 𝑃  =  ∪  𝐺 | 
						
							| 2 | 1 | tncp | ⊢ ( 𝐺  ∈  Plig  →  ∃ 𝑏  ∈  𝑃 ∃ 𝑐  ∈  𝑃 ∃ 𝑑  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝑏  ∈  𝑙  ↔  𝑏  ∈  𝐿 ) ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝑐  ∈  𝑙  ↔  𝑐  ∈  𝐿 ) ) | 
						
							| 5 |  | eleq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝑑  ∈  𝑙  ↔  𝑑  ∈  𝐿 ) ) | 
						
							| 6 | 3 4 5 | 3anbi123d | ⊢ ( 𝑙  =  𝐿  →  ( ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  ↔  ( 𝑏  ∈  𝐿  ∧  𝑐  ∈  𝐿  ∧  𝑑  ∈  𝐿 ) ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝑙  =  𝐿  →  ( ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  ↔  ¬  ( 𝑏  ∈  𝐿  ∧  𝑐  ∈  𝐿  ∧  𝑑  ∈  𝐿 ) ) ) | 
						
							| 8 | 7 | rspccv | ⊢ ( ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  →  ( 𝐿  ∈  𝐺  →  ¬  ( 𝑏  ∈  𝐿  ∧  𝑐  ∈  𝐿  ∧  𝑑  ∈  𝐿 ) ) ) | 
						
							| 9 |  | eleq1w | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∈  𝐿  ↔  𝑏  ∈  𝐿 ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( 𝑎  =  𝑏  →  ( ¬  𝑎  ∈  𝐿  ↔  ¬  𝑏  ∈  𝐿 ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( 𝑏  ∈  𝑃  ∧  ¬  𝑏  ∈  𝐿 )  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝑏  ∈  𝑃  →  ( ¬  𝑏  ∈  𝐿  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑎  =  𝑐  →  ( 𝑎  ∈  𝐿  ↔  𝑐  ∈  𝐿 ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑎  =  𝑐  →  ( ¬  𝑎  ∈  𝐿  ↔  ¬  𝑐  ∈  𝐿 ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( 𝑐  ∈  𝑃  ∧  ¬  𝑐  ∈  𝐿 )  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑐  ∈  𝑃  →  ( ¬  𝑐  ∈  𝐿  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) ) | 
						
							| 17 |  | eleq1w | ⊢ ( 𝑎  =  𝑑  →  ( 𝑎  ∈  𝐿  ↔  𝑑  ∈  𝐿 ) ) | 
						
							| 18 | 17 | notbid | ⊢ ( 𝑎  =  𝑑  →  ( ¬  𝑎  ∈  𝐿  ↔  ¬  𝑑  ∈  𝐿 ) ) | 
						
							| 19 | 18 | rspcev | ⊢ ( ( 𝑑  ∈  𝑃  ∧  ¬  𝑑  ∈  𝐿 )  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝑑  ∈  𝑃  →  ( ¬  𝑑  ∈  𝐿  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) ) | 
						
							| 21 | 12 16 20 | 3jaao | ⊢ ( ( 𝑏  ∈  𝑃  ∧  𝑐  ∈  𝑃  ∧  𝑑  ∈  𝑃 )  →  ( ( ¬  𝑏  ∈  𝐿  ∨  ¬  𝑐  ∈  𝐿  ∨  ¬  𝑑  ∈  𝐿 )  →  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) ) | 
						
							| 22 |  | 3ianor | ⊢ ( ¬  ( 𝑏  ∈  𝐿  ∧  𝑐  ∈  𝐿  ∧  𝑑  ∈  𝐿 )  ↔  ( ¬  𝑏  ∈  𝐿  ∨  ¬  𝑐  ∈  𝐿  ∨  ¬  𝑑  ∈  𝐿 ) ) | 
						
							| 23 |  | df-nel | ⊢ ( 𝑎  ∉  𝐿  ↔  ¬  𝑎  ∈  𝐿 ) | 
						
							| 24 | 23 | rexbii | ⊢ ( ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿  ↔  ∃ 𝑎  ∈  𝑃 ¬  𝑎  ∈  𝐿 ) | 
						
							| 25 | 21 22 24 | 3imtr4g | ⊢ ( ( 𝑏  ∈  𝑃  ∧  𝑐  ∈  𝑃  ∧  𝑑  ∈  𝑃 )  →  ( ¬  ( 𝑏  ∈  𝐿  ∧  𝑐  ∈  𝐿  ∧  𝑑  ∈  𝐿 )  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) | 
						
							| 26 | 8 25 | syl9r | ⊢ ( ( 𝑏  ∈  𝑃  ∧  𝑐  ∈  𝑃  ∧  𝑑  ∈  𝑃 )  →  ( ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  →  ( 𝐿  ∈  𝐺  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) ) | 
						
							| 27 | 26 | 3expia | ⊢ ( ( 𝑏  ∈  𝑃  ∧  𝑐  ∈  𝑃 )  →  ( 𝑑  ∈  𝑃  →  ( ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  →  ( 𝐿  ∈  𝐺  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) ) ) | 
						
							| 28 | 27 | rexlimdv | ⊢ ( ( 𝑏  ∈  𝑃  ∧  𝑐  ∈  𝑃 )  →  ( ∃ 𝑑  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  →  ( 𝐿  ∈  𝐺  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) ) | 
						
							| 29 | 28 | rexlimivv | ⊢ ( ∃ 𝑏  ∈  𝑃 ∃ 𝑐  ∈  𝑃 ∃ 𝑑  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙  ∧  𝑑  ∈  𝑙 )  →  ( 𝐿  ∈  𝐺  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) | 
						
							| 30 | 2 29 | syl | ⊢ ( 𝐺  ∈  Plig  →  ( 𝐿  ∈  𝐺  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( 𝐺  ∈  Plig  ∧  𝐿  ∈  𝐺 )  →  ∃ 𝑎  ∈  𝑃 𝑎  ∉  𝐿 ) |