Step |
Hyp |
Ref |
Expression |
1 |
|
l2p.1 |
⊢ 𝑃 = ∪ 𝐺 |
2 |
1
|
tncp |
⊢ ( 𝐺 ∈ Plig → ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∃ 𝑑 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝑏 ∈ 𝑙 ↔ 𝑏 ∈ 𝐿 ) ) |
4 |
|
eleq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝑐 ∈ 𝑙 ↔ 𝑐 ∈ 𝐿 ) ) |
5 |
|
eleq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝑑 ∈ 𝑙 ↔ 𝑑 ∈ 𝐿 ) ) |
6 |
3 4 5
|
3anbi123d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) ↔ ( 𝑏 ∈ 𝐿 ∧ 𝑐 ∈ 𝐿 ∧ 𝑑 ∈ 𝐿 ) ) ) |
7 |
6
|
notbid |
⊢ ( 𝑙 = 𝐿 → ( ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) ↔ ¬ ( 𝑏 ∈ 𝐿 ∧ 𝑐 ∈ 𝐿 ∧ 𝑑 ∈ 𝐿 ) ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) → ( 𝐿 ∈ 𝐺 → ¬ ( 𝑏 ∈ 𝐿 ∧ 𝑐 ∈ 𝐿 ∧ 𝑑 ∈ 𝐿 ) ) ) |
9 |
|
eleq1w |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ 𝐿 ↔ 𝑏 ∈ 𝐿 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑎 = 𝑏 → ( ¬ 𝑎 ∈ 𝐿 ↔ ¬ 𝑏 ∈ 𝐿 ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ ¬ 𝑏 ∈ 𝐿 ) → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) |
12 |
11
|
ex |
⊢ ( 𝑏 ∈ 𝑃 → ( ¬ 𝑏 ∈ 𝐿 → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) ) |
13 |
|
eleq1w |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 ∈ 𝐿 ↔ 𝑐 ∈ 𝐿 ) ) |
14 |
13
|
notbid |
⊢ ( 𝑎 = 𝑐 → ( ¬ 𝑎 ∈ 𝐿 ↔ ¬ 𝑐 ∈ 𝐿 ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝑐 ∈ 𝑃 ∧ ¬ 𝑐 ∈ 𝐿 ) → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) |
16 |
15
|
ex |
⊢ ( 𝑐 ∈ 𝑃 → ( ¬ 𝑐 ∈ 𝐿 → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) ) |
17 |
|
eleq1w |
⊢ ( 𝑎 = 𝑑 → ( 𝑎 ∈ 𝐿 ↔ 𝑑 ∈ 𝐿 ) ) |
18 |
17
|
notbid |
⊢ ( 𝑎 = 𝑑 → ( ¬ 𝑎 ∈ 𝐿 ↔ ¬ 𝑑 ∈ 𝐿 ) ) |
19 |
18
|
rspcev |
⊢ ( ( 𝑑 ∈ 𝑃 ∧ ¬ 𝑑 ∈ 𝐿 ) → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) |
20 |
19
|
ex |
⊢ ( 𝑑 ∈ 𝑃 → ( ¬ 𝑑 ∈ 𝐿 → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) ) |
21 |
12 16 20
|
3jaao |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ 𝑐 ∈ 𝑃 ∧ 𝑑 ∈ 𝑃 ) → ( ( ¬ 𝑏 ∈ 𝐿 ∨ ¬ 𝑐 ∈ 𝐿 ∨ ¬ 𝑑 ∈ 𝐿 ) → ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) ) |
22 |
|
3ianor |
⊢ ( ¬ ( 𝑏 ∈ 𝐿 ∧ 𝑐 ∈ 𝐿 ∧ 𝑑 ∈ 𝐿 ) ↔ ( ¬ 𝑏 ∈ 𝐿 ∨ ¬ 𝑐 ∈ 𝐿 ∨ ¬ 𝑑 ∈ 𝐿 ) ) |
23 |
|
df-nel |
⊢ ( 𝑎 ∉ 𝐿 ↔ ¬ 𝑎 ∈ 𝐿 ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ↔ ∃ 𝑎 ∈ 𝑃 ¬ 𝑎 ∈ 𝐿 ) |
25 |
21 22 24
|
3imtr4g |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ 𝑐 ∈ 𝑃 ∧ 𝑑 ∈ 𝑃 ) → ( ¬ ( 𝑏 ∈ 𝐿 ∧ 𝑐 ∈ 𝐿 ∧ 𝑑 ∈ 𝐿 ) → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) |
26 |
8 25
|
syl9r |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ 𝑐 ∈ 𝑃 ∧ 𝑑 ∈ 𝑃 ) → ( ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) → ( 𝐿 ∈ 𝐺 → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) ) |
27 |
26
|
3expia |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ 𝑐 ∈ 𝑃 ) → ( 𝑑 ∈ 𝑃 → ( ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) → ( 𝐿 ∈ 𝐺 → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( ( 𝑏 ∈ 𝑃 ∧ 𝑐 ∈ 𝑃 ) → ( ∃ 𝑑 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) → ( 𝐿 ∈ 𝐺 → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∃ 𝑑 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ∧ 𝑑 ∈ 𝑙 ) → ( 𝐿 ∈ 𝐺 → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) |
30 |
2 29
|
syl |
⊢ ( 𝐺 ∈ Plig → ( 𝐿 ∈ 𝐺 → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) ) |
31 |
30
|
imp |
⊢ ( ( 𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺 ) → ∃ 𝑎 ∈ 𝑃 𝑎 ∉ 𝐿 ) |