Description: For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | l2p.1 | |
|
Assertion | lpni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | l2p.1 | |
|
2 | 1 | tncp | |
3 | eleq2 | |
|
4 | eleq2 | |
|
5 | eleq2 | |
|
6 | 3 4 5 | 3anbi123d | |
7 | 6 | notbid | |
8 | 7 | rspccv | |
9 | eleq1w | |
|
10 | 9 | notbid | |
11 | 10 | rspcev | |
12 | 11 | ex | |
13 | eleq1w | |
|
14 | 13 | notbid | |
15 | 14 | rspcev | |
16 | 15 | ex | |
17 | eleq1w | |
|
18 | 17 | notbid | |
19 | 18 | rspcev | |
20 | 19 | ex | |
21 | 12 16 20 | 3jaao | |
22 | 3ianor | |
|
23 | df-nel | |
|
24 | 23 | rexbii | |
25 | 21 22 24 | 3imtr4g | |
26 | 8 25 | syl9r | |
27 | 26 | 3expia | |
28 | 27 | rexlimdv | |
29 | 28 | rexlimivv | |
30 | 2 29 | syl | |
31 | 30 | imp | |