Metamath Proof Explorer


Theorem lpni

Description: For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009)

Ref Expression
Hypothesis l2p.1 P=G
Assertion lpni GPligLGaPaL

Proof

Step Hyp Ref Expression
1 l2p.1 P=G
2 1 tncp GPligbPcPdPlG¬blcldl
3 eleq2 l=LblbL
4 eleq2 l=LclcL
5 eleq2 l=LdldL
6 3 4 5 3anbi123d l=LblcldlbLcLdL
7 6 notbid l=L¬blcldl¬bLcLdL
8 7 rspccv lG¬blcldlLG¬bLcLdL
9 eleq1w a=baLbL
10 9 notbid a=b¬aL¬bL
11 10 rspcev bP¬bLaP¬aL
12 11 ex bP¬bLaP¬aL
13 eleq1w a=caLcL
14 13 notbid a=c¬aL¬cL
15 14 rspcev cP¬cLaP¬aL
16 15 ex cP¬cLaP¬aL
17 eleq1w a=daLdL
18 17 notbid a=d¬aL¬dL
19 18 rspcev dP¬dLaP¬aL
20 19 ex dP¬dLaP¬aL
21 12 16 20 3jaao bPcPdP¬bL¬cL¬dLaP¬aL
22 3ianor ¬bLcLdL¬bL¬cL¬dL
23 df-nel aL¬aL
24 23 rexbii aPaLaP¬aL
25 21 22 24 3imtr4g bPcPdP¬bLcLdLaPaL
26 8 25 syl9r bPcPdPlG¬blcldlLGaPaL
27 26 3expia bPcPdPlG¬blcldlLGaPaL
28 27 rexlimdv bPcPdPlG¬blcldlLGaPaL
29 28 rexlimivv bPcPdPlG¬blcldlLGaPaL
30 2 29 syl GPligLGaPaL
31 30 imp GPligLGaPaL