Metamath Proof Explorer


Theorem nsnlplig

Description: There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021) (Proof shortened by AV, 5-Dec-2021)

Ref Expression
Assertion nsnlplig G Plig ¬ A G

Proof

Step Hyp Ref Expression
1 eqid G = G
2 1 l2p G Plig A G a G b G a b a A b A
3 elsni a A a = A
4 elsni b A b = A
5 eqtr3 a = A b = A a = b
6 eqneqall a = b a b ¬ A G
7 5 6 syl a = A b = A a b ¬ A G
8 3 4 7 syl2an a A b A a b ¬ A G
9 8 impcom a b a A b A ¬ A G
10 9 3impb a b a A b A ¬ A G
11 10 a1i a G b G a b a A b A ¬ A G
12 11 rexlimivv a G b G a b a A b A ¬ A G
13 2 12 syl G Plig A G ¬ A G
14 13 pm2.01da G Plig ¬ A G