Metamath Proof Explorer


Theorem nsnlpligALT

Description: Alternate version of nsnlplig using the predicate e/ instead of -. e. and whose proof is shorter. (Contributed by AV, 5-Dec-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nsnlpligALT G Plig A G

Proof

Step Hyp Ref Expression
1 eqid G = G
2 1 l2p G Plig A G a G b G a b a A b A
3 elsni a A a = A
4 elsni b A b = A
5 eqtr3 a = A b = A a = b
6 eqneqall a = b a b A G
7 5 6 syl a = A b = A a b A G
8 3 4 7 syl2an a A b A a b A G
9 8 impcom a b a A b A A G
10 9 3impb a b a A b A A G
11 10 a1i a G b G a b a A b A A G
12 11 rexlimivv a G b G a b a A b A A G
13 2 12 syl G Plig A G A G
14 simpr G Plig A G A G
15 13 14 pm2.61danel G Plig A G