Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐺 = ∪ 𝐺 |
2 |
1
|
l2p |
⊢ ( ( 𝐺 ∈ Plig ∧ { 𝐴 } ∈ 𝐺 ) → ∃ 𝑎 ∈ ∪ 𝐺 ∃ 𝑏 ∈ ∪ 𝐺 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) ) |
3 |
|
elsni |
⊢ ( 𝑎 ∈ { 𝐴 } → 𝑎 = 𝐴 ) |
4 |
|
elsni |
⊢ ( 𝑏 ∈ { 𝐴 } → 𝑏 = 𝐴 ) |
5 |
|
eqtr3 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → 𝑎 = 𝑏 ) |
6 |
|
eqneqall |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ 𝑏 → ¬ { 𝐴 } ∈ 𝐺 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 → ¬ { 𝐴 } ∈ 𝐺 ) ) |
8 |
3 4 7
|
syl2an |
⊢ ( ( 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) → ( 𝑎 ≠ 𝑏 → ¬ { 𝐴 } ∈ 𝐺 ) ) |
9 |
8
|
impcom |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ ( 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) ) → ¬ { 𝐴 } ∈ 𝐺 ) |
10 |
9
|
3impb |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) → ¬ { 𝐴 } ∈ 𝐺 ) |
11 |
10
|
a1i |
⊢ ( ( 𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) → ¬ { 𝐴 } ∈ 𝐺 ) ) |
12 |
11
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ∪ 𝐺 ∃ 𝑏 ∈ ∪ 𝐺 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ { 𝐴 } ∧ 𝑏 ∈ { 𝐴 } ) → ¬ { 𝐴 } ∈ 𝐺 ) |
13 |
2 12
|
syl |
⊢ ( ( 𝐺 ∈ Plig ∧ { 𝐴 } ∈ 𝐺 ) → ¬ { 𝐴 } ∈ 𝐺 ) |
14 |
13
|
pm2.01da |
⊢ ( 𝐺 ∈ Plig → ¬ { 𝐴 } ∈ 𝐺 ) |