| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐺  =  ∪  𝐺 | 
						
							| 2 | 1 | l2p | ⊢ ( ( 𝐺  ∈  Plig  ∧  { 𝐴 }  ∈  𝐺 )  →  ∃ 𝑎  ∈  ∪  𝐺 ∃ 𝑏  ∈  ∪  𝐺 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } ) ) | 
						
							| 3 |  | elsni | ⊢ ( 𝑎  ∈  { 𝐴 }  →  𝑎  =  𝐴 ) | 
						
							| 4 |  | elsni | ⊢ ( 𝑏  ∈  { 𝐴 }  →  𝑏  =  𝐴 ) | 
						
							| 5 |  | eqtr3 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐴 )  →  𝑎  =  𝑏 ) | 
						
							| 6 |  | eqneqall | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ≠  𝑏  →  ¬  { 𝐴 }  ∈  𝐺 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐴 )  →  ( 𝑎  ≠  𝑏  →  ¬  { 𝐴 }  ∈  𝐺 ) ) | 
						
							| 8 | 3 4 7 | syl2an | ⊢ ( ( 𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } )  →  ( 𝑎  ≠  𝑏  →  ¬  { 𝐴 }  ∈  𝐺 ) ) | 
						
							| 9 | 8 | impcom | ⊢ ( ( 𝑎  ≠  𝑏  ∧  ( 𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } ) )  →  ¬  { 𝐴 }  ∈  𝐺 ) | 
						
							| 10 | 9 | 3impb | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } )  →  ¬  { 𝐴 }  ∈  𝐺 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑎  ∈  ∪  𝐺  ∧  𝑏  ∈  ∪  𝐺 )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } )  →  ¬  { 𝐴 }  ∈  𝐺 ) ) | 
						
							| 12 | 11 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ∪  𝐺 ∃ 𝑏  ∈  ∪  𝐺 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  { 𝐴 }  ∧  𝑏  ∈  { 𝐴 } )  →  ¬  { 𝐴 }  ∈  𝐺 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( ( 𝐺  ∈  Plig  ∧  { 𝐴 }  ∈  𝐺 )  →  ¬  { 𝐴 }  ∈  𝐺 ) | 
						
							| 14 | 13 | pm2.01da | ⊢ ( 𝐺  ∈  Plig  →  ¬  { 𝐴 }  ∈  𝐺 ) |