Step |
Hyp |
Ref |
Expression |
1 |
|
isplig.1 |
⊢ 𝑃 = ∪ 𝐺 |
2 |
|
unieq |
⊢ ( 𝑥 = 𝐺 → ∪ 𝑥 = ∪ 𝐺 ) |
3 |
2 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐺 → ∪ 𝑥 = 𝑃 ) |
4 |
|
reueq1 |
⊢ ( 𝑥 = 𝐺 → ( ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐺 → ( ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ↔ ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) ) |
6 |
3 5
|
raleqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ↔ ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) ) |
7 |
3 6
|
raleqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑎 ∈ ∪ 𝑥 ∀ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ↔ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) ) |
8 |
3
|
rexeqdv |
⊢ ( 𝑥 = 𝐺 → ( ∃ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) |
9 |
3 8
|
rexeqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) |
10 |
9
|
raleqbi1dv |
⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑙 ∈ 𝑥 ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) |
11 |
|
raleq |
⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ↔ ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
12 |
3 11
|
rexeqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∃ 𝑐 ∈ ∪ 𝑥 ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ↔ ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
13 |
3 12
|
rexeqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∃ 𝑏 ∈ ∪ 𝑥 ∃ 𝑐 ∈ ∪ 𝑥 ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ↔ ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
14 |
3 13
|
rexeqbidv |
⊢ ( 𝑥 = 𝐺 → ( ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ∃ 𝑐 ∈ ∪ 𝑥 ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ↔ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
15 |
7 10 14
|
3anbi123d |
⊢ ( 𝑥 = 𝐺 → ( ( ∀ 𝑎 ∈ ∪ 𝑥 ∀ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝑥 ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ∃ 𝑐 ∈ ∪ 𝑥 ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ↔ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) ) |
16 |
|
df-plig |
⊢ Plig = { 𝑥 ∣ ( ∀ 𝑎 ∈ ∪ 𝑥 ∀ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝑥 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝑥 ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ ∪ 𝑥 ∃ 𝑏 ∈ ∪ 𝑥 ∃ 𝑐 ∈ ∪ 𝑥 ∀ 𝑙 ∈ 𝑥 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) } |
17 |
15 16
|
elab2g |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Plig ↔ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) ) |