Metamath Proof Explorer


Definition df-q1p

Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg . We actually use the reversed version for better harmony with our divisibility df-dvdsr . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-q1p quot1p=rVPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cq1p classquot1p
1 vr setvarr
2 cvv classV
3 cpl1 classPoly1
4 1 cv setvarr
5 4 3 cfv classPoly1r
6 vp setvarp
7 cbs classBase
8 6 cv setvarp
9 8 7 cfv classBasep
10 vb setvarb
11 vf setvarf
12 10 cv setvarb
13 vg setvarg
14 vq setvarq
15 cdg1 classdeg1
16 4 15 cfv classdeg1r
17 11 cv setvarf
18 csg class-𝑔
19 8 18 cfv class-p
20 14 cv setvarq
21 cmulr class𝑟
22 8 21 cfv classp
23 13 cv setvarg
24 20 23 22 co classqpg
25 17 24 19 co classf-pqpg
26 25 16 cfv classdeg1rf-pqpg
27 clt class<
28 23 16 cfv classdeg1rg
29 26 28 27 wbr wffdeg1rf-pqpg<deg1rg
30 29 14 12 crio classιqb|deg1rf-pqpg<deg1rg
31 11 13 12 12 30 cmpo classfb,gbιqb|deg1rf-pqpg<deg1rg
32 10 9 31 csb classBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg
33 6 5 32 csb classPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg
34 1 2 33 cmpt classrVPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg
35 0 34 wceq wffquot1p=rVPoly1r/pBasep/bfb,gbιqb|deg1rf-pqpg<deg1rg