Metamath Proof Explorer


Definition df-reno

Description: Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from Conway p. 24. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion df-reno s = x No | n s + s n < s x x < s n x = y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n

Detailed syntax breakdown

Step Hyp Ref Expression
0 creno class s
1 vx setvar x
2 csur class No
3 vn setvar n
4 cnns class s
5 cnegs class + s
6 3 cv setvar n
7 6 5 cfv class + s n
8 cslt class < s
9 1 cv setvar x
10 7 9 8 wbr wff + s n < s x
11 9 6 8 wbr wff x < s n
12 10 11 wa wff + s n < s x x < s n
13 12 3 4 wrex wff n s + s n < s x x < s n
14 vy setvar y
15 14 cv setvar y
16 csubs class - s
17 c1s class 1 s
18 cdivs class / su
19 17 6 18 co class 1 s / su n
20 9 19 16 co class x - s 1 s / su n
21 15 20 wceq wff y = x - s 1 s / su n
22 21 3 4 wrex wff n s y = x - s 1 s / su n
23 22 14 cab class y | n s y = x - s 1 s / su n
24 cscut class | s
25 cadds class + s
26 9 19 25 co class x + s 1 s / su n
27 15 26 wceq wff y = x + s 1 s / su n
28 27 3 4 wrex wff n s y = x + s 1 s / su n
29 28 14 cab class y | n s y = x + s 1 s / su n
30 23 29 24 co class y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n
31 9 30 wceq wff x = y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n
32 13 31 wa wff n s + s n < s x x < s n x = y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n
33 32 1 2 crab class x No | n s + s n < s x x < s n x = y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n
34 0 33 wceq wff s = x No | n s + s n < s x x < s n x = y | n s y = x - s 1 s / su n | s y | n s y = x + s 1 s / su n