| Step |
Hyp |
Ref |
Expression |
| 0 |
|
creno |
|- RR_s |
| 1 |
|
vx |
|- x |
| 2 |
|
csur |
|- No |
| 3 |
|
vn |
|- n |
| 4 |
|
cnns |
|- NN_s |
| 5 |
|
cnegs |
|- -us |
| 6 |
3
|
cv |
|- n |
| 7 |
6 5
|
cfv |
|- ( -us ` n ) |
| 8 |
|
cslt |
|- |
| 9 |
1
|
cv |
|- x |
| 10 |
7 9 8
|
wbr |
|- ( -us ` n ) |
| 11 |
9 6 8
|
wbr |
|- x |
| 12 |
10 11
|
wa |
|- ( ( -us ` n ) |
| 13 |
12 3 4
|
wrex |
|- E. n e. NN_s ( ( -us ` n ) |
| 14 |
|
vy |
|- y |
| 15 |
14
|
cv |
|- y |
| 16 |
|
csubs |
|- -s |
| 17 |
|
c1s |
|- 1s |
| 18 |
|
cdivs |
|- /su |
| 19 |
17 6 18
|
co |
|- ( 1s /su n ) |
| 20 |
9 19 16
|
co |
|- ( x -s ( 1s /su n ) ) |
| 21 |
15 20
|
wceq |
|- y = ( x -s ( 1s /su n ) ) |
| 22 |
21 3 4
|
wrex |
|- E. n e. NN_s y = ( x -s ( 1s /su n ) ) |
| 23 |
22 14
|
cab |
|- { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |
| 24 |
|
cscut |
|- |s |
| 25 |
|
cadds |
|- +s |
| 26 |
9 19 25
|
co |
|- ( x +s ( 1s /su n ) ) |
| 27 |
15 26
|
wceq |
|- y = ( x +s ( 1s /su n ) ) |
| 28 |
27 3 4
|
wrex |
|- E. n e. NN_s y = ( x +s ( 1s /su n ) ) |
| 29 |
28 14
|
cab |
|- { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } |
| 30 |
23 29 24
|
co |
|- ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } ) |
| 31 |
9 30
|
wceq |
|- x = ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } ) |
| 32 |
13 31
|
wa |
|- ( E. n e. NN_s ( ( -us ` n ) |
| 33 |
32 1 2
|
crab |
|- { x e. No | ( E. n e. NN_s ( ( -us ` n ) |
| 34 |
0 33
|
wceq |
|- RR_s = { x e. No | ( E. n e. NN_s ( ( -us ` n ) |