| Step | Hyp | Ref | Expression | 
						
							| 0 |  | creno |  |-  RR_s | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | csur |  |-  No | 
						
							| 3 |  | vn |  |-  n | 
						
							| 4 |  | cnns |  |-  NN_s | 
						
							| 5 |  | cnegs |  |-  -us | 
						
							| 6 | 3 | cv |  |-  n | 
						
							| 7 | 6 5 | cfv |  |-  ( -us ` n ) | 
						
							| 8 |  | cslt |  |-   | 
						
							| 9 | 1 | cv |  |-  x | 
						
							| 10 | 7 9 8 | wbr |  |-  ( -us ` n )  | 
						
							| 11 | 9 6 8 | wbr |  |-  x  | 
						
							| 12 | 10 11 | wa |  |-  ( ( -us ` n )  | 
						
							| 13 | 12 3 4 | wrex |  |-  E. n e. NN_s ( ( -us ` n )  | 
						
							| 14 |  | vy |  |-  y | 
						
							| 15 | 14 | cv |  |-  y | 
						
							| 16 |  | csubs |  |-  -s | 
						
							| 17 |  | c1s |  |-  1s | 
						
							| 18 |  | cdivs |  |-  /su | 
						
							| 19 | 17 6 18 | co |  |-  ( 1s /su n ) | 
						
							| 20 | 9 19 16 | co |  |-  ( x -s ( 1s /su n ) ) | 
						
							| 21 | 15 20 | wceq |  |-  y = ( x -s ( 1s /su n ) ) | 
						
							| 22 | 21 3 4 | wrex |  |-  E. n e. NN_s y = ( x -s ( 1s /su n ) ) | 
						
							| 23 | 22 14 | cab |  |-  { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } | 
						
							| 24 |  | cscut |  |-  |s | 
						
							| 25 |  | cadds |  |-  +s | 
						
							| 26 | 9 19 25 | co |  |-  ( x +s ( 1s /su n ) ) | 
						
							| 27 | 15 26 | wceq |  |-  y = ( x +s ( 1s /su n ) ) | 
						
							| 28 | 27 3 4 | wrex |  |-  E. n e. NN_s y = ( x +s ( 1s /su n ) ) | 
						
							| 29 | 28 14 | cab |  |-  { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } | 
						
							| 30 | 23 29 24 | co |  |-  ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } ) | 
						
							| 31 | 9 30 | wceq |  |-  x = ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } ) | 
						
							| 32 | 13 31 | wa |  |-  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 33 | 32 1 2 | crab |  |-  { x e. No | ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 34 | 0 33 | wceq |  |-  RR_s = { x e. No | ( E. n e. NN_s ( ( -us ` n )  |