Metamath Proof Explorer


Definition df-reno

Description: Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from Conway p. 24. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion df-reno
|- RR_s = { x e. No | ( E. n e. NN_s ( ( -us ` n ) 

Detailed syntax breakdown

Step Hyp Ref Expression
0 creno
 |-  RR_s
1 vx
 |-  x
2 csur
 |-  No
3 vn
 |-  n
4 cnns
 |-  NN_s
5 cnegs
 |-  -us
6 3 cv
 |-  n
7 6 5 cfv
 |-  ( -us ` n )
8 cslt
 |-  
9 1 cv
 |-  x
10 7 9 8 wbr
 |-  ( -us ` n ) 
11 9 6 8 wbr
 |-  x 
12 10 11 wa
 |-  ( ( -us ` n ) 
13 12 3 4 wrex
 |-  E. n e. NN_s ( ( -us ` n ) 
14 vy
 |-  y
15 14 cv
 |-  y
16 csubs
 |-  -s
17 c1s
 |-  1s
18 cdivs
 |-  /su
19 17 6 18 co
 |-  ( 1s /su n )
20 9 19 16 co
 |-  ( x -s ( 1s /su n ) )
21 15 20 wceq
 |-  y = ( x -s ( 1s /su n ) )
22 21 3 4 wrex
 |-  E. n e. NN_s y = ( x -s ( 1s /su n ) )
23 22 14 cab
 |-  { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) }
24 cscut
 |-  |s
25 cadds
 |-  +s
26 9 19 25 co
 |-  ( x +s ( 1s /su n ) )
27 15 26 wceq
 |-  y = ( x +s ( 1s /su n ) )
28 27 3 4 wrex
 |-  E. n e. NN_s y = ( x +s ( 1s /su n ) )
29 28 14 cab
 |-  { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) }
30 23 29 24 co
 |-  ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } )
31 9 30 wceq
 |-  x = ( { y | E. n e. NN_s y = ( x -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( x +s ( 1s /su n ) ) } )
32 13 31 wa
 |-  ( E. n e. NN_s ( ( -us ` n ) 
33 32 1 2 crab
 |-  { x e. No | ( E. n e. NN_s ( ( -us ` n ) 
34 0 33 wceq
 |-  RR_s = { x e. No | ( E. n e. NN_s ( ( -us ` n )