Metamath Proof Explorer


Definition df-reno

Description: Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from Conway p. 24. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion df-reno s = { 𝑥 No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 creno s
1 vx 𝑥
2 csur No
3 vn 𝑛
4 cnns s
5 cnegs -us
6 3 cv 𝑛
7 6 5 cfv ( -us𝑛 )
8 cslt <s
9 1 cv 𝑥
10 7 9 8 wbr ( -us𝑛 ) <s 𝑥
11 9 6 8 wbr 𝑥 <s 𝑛
12 10 11 wa ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 )
13 12 3 4 wrex 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 )
14 vy 𝑦
15 14 cv 𝑦
16 csubs -s
17 c1s 1s
18 cdivs /su
19 17 6 18 co ( 1s /su 𝑛 )
20 9 19 16 co ( 𝑥 -s ( 1s /su 𝑛 ) )
21 15 20 wceq 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) )
22 21 3 4 wrex 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) )
23 22 14 cab { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) }
24 cscut |s
25 cadds +s
26 9 19 25 co ( 𝑥 +s ( 1s /su 𝑛 ) )
27 15 26 wceq 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) )
28 27 3 4 wrex 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) )
29 28 14 cab { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) }
30 23 29 24 co ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } )
31 9 30 wceq 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } )
32 13 31 wa ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) )
33 32 1 2 crab { 𝑥 No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) }
34 0 33 wceq s = { 𝑥 No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝑥𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) }