| Step | Hyp | Ref | Expression | 
						
							| 0 |  | creno | ⊢ ℝs | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | csur | ⊢  No | 
						
							| 3 |  | vn | ⊢ 𝑛 | 
						
							| 4 |  | cnns | ⊢ ℕs | 
						
							| 5 |  | cnegs | ⊢  -us | 
						
							| 6 | 3 | cv | ⊢ 𝑛 | 
						
							| 7 | 6 5 | cfv | ⊢ (  -us  ‘ 𝑛 ) | 
						
							| 8 |  | cslt | ⊢  <s | 
						
							| 9 | 1 | cv | ⊢ 𝑥 | 
						
							| 10 | 7 9 8 | wbr | ⊢ (  -us  ‘ 𝑛 )  <s  𝑥 | 
						
							| 11 | 9 6 8 | wbr | ⊢ 𝑥  <s  𝑛 | 
						
							| 12 | 10 11 | wa | ⊢ ( (  -us  ‘ 𝑛 )  <s  𝑥  ∧  𝑥  <s  𝑛 ) | 
						
							| 13 | 12 3 4 | wrex | ⊢ ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑥  ∧  𝑥  <s  𝑛 ) | 
						
							| 14 |  | vy | ⊢ 𝑦 | 
						
							| 15 | 14 | cv | ⊢ 𝑦 | 
						
							| 16 |  | csubs | ⊢  -s | 
						
							| 17 |  | c1s | ⊢  1s | 
						
							| 18 |  | cdivs | ⊢  /su | 
						
							| 19 | 17 6 18 | co | ⊢ (  1s   /su  𝑛 ) | 
						
							| 20 | 9 19 16 | co | ⊢ ( 𝑥  -s  (  1s   /su  𝑛 ) ) | 
						
							| 21 | 15 20 | wceq | ⊢ 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) | 
						
							| 22 | 21 3 4 | wrex | ⊢ ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) | 
						
							| 23 | 22 14 | cab | ⊢ { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) } | 
						
							| 24 |  | cscut | ⊢  |s | 
						
							| 25 |  | cadds | ⊢  +s | 
						
							| 26 | 9 19 25 | co | ⊢ ( 𝑥  +s  (  1s   /su  𝑛 ) ) | 
						
							| 27 | 15 26 | wceq | ⊢ 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) | 
						
							| 28 | 27 3 4 | wrex | ⊢ ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) | 
						
							| 29 | 28 14 | cab | ⊢ { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } | 
						
							| 30 | 23 29 24 | co | ⊢ ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 31 | 9 30 | wceq | ⊢ 𝑥  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 32 | 13 31 | wa | ⊢ ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑥  ∧  𝑥  <s  𝑛 )  ∧  𝑥  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 33 | 32 1 2 | crab | ⊢ { 𝑥  ∈   No   ∣  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑥  ∧  𝑥  <s  𝑛 )  ∧  𝑥  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } ) ) } | 
						
							| 34 | 0 33 | wceq | ⊢ ℝs  =  { 𝑥  ∈   No   ∣  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑥  ∧  𝑥  <s  𝑛 )  ∧  𝑥  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝑥  +s  (  1s   /su  𝑛 ) ) } ) ) } |