Step |
Hyp |
Ref |
Expression |
0 |
|
creno |
⊢ ℝs |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
csur |
⊢ No |
3 |
|
vn |
⊢ 𝑛 |
4 |
|
cnns |
⊢ ℕs |
5 |
|
cnegs |
⊢ -us |
6 |
3
|
cv |
⊢ 𝑛 |
7 |
6 5
|
cfv |
⊢ ( -us ‘ 𝑛 ) |
8 |
|
cslt |
⊢ <s |
9 |
1
|
cv |
⊢ 𝑥 |
10 |
7 9 8
|
wbr |
⊢ ( -us ‘ 𝑛 ) <s 𝑥 |
11 |
9 6 8
|
wbr |
⊢ 𝑥 <s 𝑛 |
12 |
10 11
|
wa |
⊢ ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) |
13 |
12 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) |
14 |
|
vy |
⊢ 𝑦 |
15 |
14
|
cv |
⊢ 𝑦 |
16 |
|
csubs |
⊢ -s |
17 |
|
c1s |
⊢ 1s |
18 |
|
cdivs |
⊢ /su |
19 |
17 6 18
|
co |
⊢ ( 1s /su 𝑛 ) |
20 |
9 19 16
|
co |
⊢ ( 𝑥 -s ( 1s /su 𝑛 ) ) |
21 |
15 20
|
wceq |
⊢ 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) |
22 |
21 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) |
23 |
22 14
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |
24 |
|
cscut |
⊢ |s |
25 |
|
cadds |
⊢ +s |
26 |
9 19 25
|
co |
⊢ ( 𝑥 +s ( 1s /su 𝑛 ) ) |
27 |
15 26
|
wceq |
⊢ 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) |
28 |
27 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) |
29 |
28 14
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } |
30 |
23 29 24
|
co |
⊢ ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) |
31 |
9 30
|
wceq |
⊢ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) |
32 |
13 31
|
wa |
⊢ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) |
33 |
32 1 2
|
crab |
⊢ { 𝑥 ∈ No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) } |
34 |
0 33
|
wceq |
⊢ ℝs = { 𝑥 ∈ No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) } |