| Step |
Hyp |
Ref |
Expression |
| 0 |
|
creno |
⊢ ℝs |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
csur |
⊢ No |
| 3 |
|
vn |
⊢ 𝑛 |
| 4 |
|
cnns |
⊢ ℕs |
| 5 |
|
cnegs |
⊢ -us |
| 6 |
3
|
cv |
⊢ 𝑛 |
| 7 |
6 5
|
cfv |
⊢ ( -us ‘ 𝑛 ) |
| 8 |
|
cslt |
⊢ <s |
| 9 |
1
|
cv |
⊢ 𝑥 |
| 10 |
7 9 8
|
wbr |
⊢ ( -us ‘ 𝑛 ) <s 𝑥 |
| 11 |
9 6 8
|
wbr |
⊢ 𝑥 <s 𝑛 |
| 12 |
10 11
|
wa |
⊢ ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) |
| 13 |
12 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) |
| 14 |
|
vy |
⊢ 𝑦 |
| 15 |
14
|
cv |
⊢ 𝑦 |
| 16 |
|
csubs |
⊢ -s |
| 17 |
|
c1s |
⊢ 1s |
| 18 |
|
cdivs |
⊢ /su |
| 19 |
17 6 18
|
co |
⊢ ( 1s /su 𝑛 ) |
| 20 |
9 19 16
|
co |
⊢ ( 𝑥 -s ( 1s /su 𝑛 ) ) |
| 21 |
15 20
|
wceq |
⊢ 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) |
| 22 |
21 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) |
| 23 |
22 14
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |
| 24 |
|
cscut |
⊢ |s |
| 25 |
|
cadds |
⊢ +s |
| 26 |
9 19 25
|
co |
⊢ ( 𝑥 +s ( 1s /su 𝑛 ) ) |
| 27 |
15 26
|
wceq |
⊢ 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) |
| 28 |
27 3 4
|
wrex |
⊢ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) |
| 29 |
28 14
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } |
| 30 |
23 29 24
|
co |
⊢ ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) |
| 31 |
9 30
|
wceq |
⊢ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) |
| 32 |
13 31
|
wa |
⊢ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) |
| 33 |
32 1 2
|
crab |
⊢ { 𝑥 ∈ No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) } |
| 34 |
0 33
|
wceq |
⊢ ℝs = { 𝑥 ∈ No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑥 ∧ 𝑥 <s 𝑛 ) ∧ 𝑥 = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝑥 +s ( 1s /su 𝑛 ) ) } ) ) } |