| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑦  =  𝐴  →  ( (  -us  ‘ 𝑛 )  <s  𝑦  ↔  (  -us  ‘ 𝑛 )  <s  𝐴 ) ) | 
						
							| 2 |  | breq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  <s  𝑛  ↔  𝐴  <s  𝑛 ) ) | 
						
							| 3 | 1 2 | anbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( (  -us  ‘ 𝑛 )  <s  𝑦  ∧  𝑦  <s  𝑛 )  ↔  ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 ) ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑦  ∧  𝑦  <s  𝑛 )  ↔  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 ) ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  -s  (  1s   /su  𝑛 ) )  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) )  ↔  𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 8 | 7 | rexbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) ) }  =  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  +s  (  1s   /su  𝑛 ) )  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) )  ↔  𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 13 | 12 | abbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) ) }  =  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 14 | 9 13 | oveq12d | ⊢ ( 𝑦  =  𝐴  →  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) ) } )  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 15 | 5 14 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) ) } )  ↔  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) ) | 
						
							| 16 | 4 15 | anbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑦  ∧  𝑦  <s  𝑛 )  ∧  𝑦  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) ) } ) )  ↔  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) | 
						
							| 17 |  | df-reno | ⊢ ℝs  =  { 𝑦  ∈   No   ∣  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝑦  ∧  𝑦  <s  𝑛 )  ∧  𝑦  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝑦  +s  (  1s   /su  𝑛 ) ) } ) ) } | 
						
							| 18 | 16 17 | elrab2 | ⊢ ( 𝐴  ∈  ℝs  ↔  ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) |