Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( ( -us ‘ 𝑛 ) <s 𝑦 ↔ ( -us ‘ 𝑛 ) <s 𝐴 ) ) |
2 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 <s 𝑛 ↔ 𝐴 <s 𝑛 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( -us ‘ 𝑛 ) <s 𝑦 ∧ 𝑦 <s 𝑛 ) ↔ ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑦 ∧ 𝑦 <s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ) ) |
5 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
6 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 -s ( 1s /su 𝑛 ) ) = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) ↔ 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) } = { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) |
10 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 +s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) ↔ 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
13 |
12
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) } = { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
14 |
9 13
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) } ) = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) |
15 |
5 14
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) } ) ↔ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) |
16 |
4 15
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑦 ∧ 𝑦 <s 𝑛 ) ∧ 𝑦 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) } ) ) ↔ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
17 |
|
df-reno |
⊢ ℝs = { 𝑦 ∈ No ∣ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝑦 ∧ 𝑦 <s 𝑛 ) ∧ 𝑦 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝑦 +s ( 1s /su 𝑛 ) ) } ) ) } |
18 |
16 17
|
elrab2 |
⊢ ( 𝐴 ∈ ℝs ↔ ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ) |