| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsex | ⊢ ℕs  ∈  V | 
						
							| 2 | 1 | abrexex | ⊢ { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∈  V | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∈  V ) | 
						
							| 4 | 1 | abrexex | ⊢ { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ∈  V ) | 
						
							| 6 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑛  ∈  ℕs  →   1s   ∈   No  ) | 
						
							| 8 |  | nnsno | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ∈   No  ) | 
						
							| 9 |  | nnne0s | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ≠   0s  ) | 
						
							| 10 | 7 8 9 | divscld | ⊢ ( 𝑛  ∈  ℕs  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 11 |  | subscl | ⊢ ( ( 𝐴  ∈   No   ∧  (  1s   /su  𝑛 )  ∈   No  )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  ( 𝑥  ∈   No   ↔  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∈   No  ) ) | 
						
							| 14 | 12 13 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  𝑥  ∈   No  ) ) | 
						
							| 15 | 14 | rexlimdva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  𝑥  ∈   No  ) ) | 
						
							| 16 | 15 | abssdv | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 17 |  | addscl | ⊢ ( ( 𝐴  ∈   No   ∧  (  1s   /su  𝑛 )  ∈   No  )  →  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 18 | 10 17 | sylan2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 19 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  ( 𝑥  ∈   No   ↔  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∈   No  ) ) | 
						
							| 20 | 18 19 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  𝑥  ∈   No  ) ) | 
						
							| 21 | 20 | rexlimdva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  𝑥  ∈   No  ) ) | 
						
							| 22 | 21 | abssdv | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 26 | 23 25 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 27 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 28 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 29 | 28 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  (  1s   /su  𝑛 )  =  (  1s   /su  𝑚 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴  +s  (  1s   /su  𝑛 ) )  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 33 | 32 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 34 | 29 33 | bitrdi | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 35 | 27 34 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 36 | 26 35 | anbi12i | ⊢ ( ( 𝑦  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∧  𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  ∃ 𝑚  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 37 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  ∃ 𝑚  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 38 | 36 37 | bitr4i | ⊢ ( ( 𝑦  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∧  𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  𝐴  ∈   No  ) | 
						
							| 40 | 10 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 41 | 39 40 | subsvald | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  =  ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 42 | 41 | adantrr | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  =  ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 43 | 10 | negscld | ⊢ ( 𝑛  ∈  ℕs  →  (  -us  ‘ (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 45 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →   0s   ∈   No  ) | 
						
							| 47 | 6 | a1i | ⊢ ( 𝑚  ∈  ℕs  →   1s   ∈   No  ) | 
						
							| 48 |  | nnsno | ⊢ ( 𝑚  ∈  ℕs  →  𝑚  ∈   No  ) | 
						
							| 49 |  | nnne0s | ⊢ ( 𝑚  ∈  ℕs  →  𝑚  ≠   0s  ) | 
						
							| 50 | 47 48 49 | divscld | ⊢ ( 𝑚  ∈  ℕs  →  (  1s   /su  𝑚 )  ∈   No  ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →  (  1s   /su  𝑚 )  ∈   No  ) | 
						
							| 52 |  | id | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ∈  ℕs ) | 
						
							| 53 | 52 | nnsrecgt0d | ⊢ ( 𝑛  ∈  ℕs  →   0s   <s  (  1s   /su  𝑛 ) ) | 
						
							| 54 | 45 | a1i | ⊢ ( 𝑛  ∈  ℕs  →   0s   ∈   No  ) | 
						
							| 55 | 54 10 | sltnegd | ⊢ ( 𝑛  ∈  ℕs  →  (  0s   <s  (  1s   /su  𝑛 )  ↔  (  -us  ‘ (  1s   /su  𝑛 ) )  <s  (  -us  ‘  0s  ) ) ) | 
						
							| 56 | 53 55 | mpbid | ⊢ ( 𝑛  ∈  ℕs  →  (  -us  ‘ (  1s   /su  𝑛 ) )  <s  (  -us  ‘  0s  ) ) | 
						
							| 57 |  | negs0s | ⊢ (  -us  ‘  0s  )  =   0s | 
						
							| 58 | 56 57 | breqtrdi | ⊢ ( 𝑛  ∈  ℕs  →  (  -us  ‘ (  1s   /su  𝑛 ) )  <s   0s  ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  <s   0s  ) | 
						
							| 60 |  | id | ⊢ ( 𝑚  ∈  ℕs  →  𝑚  ∈  ℕs ) | 
						
							| 61 | 60 | nnsrecgt0d | ⊢ ( 𝑚  ∈  ℕs  →   0s   <s  (  1s   /su  𝑚 ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →   0s   <s  (  1s   /su  𝑚 ) ) | 
						
							| 63 | 44 46 51 59 62 | slttrd | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  <s  (  1s   /su  𝑚 ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  <s  (  1s   /su  𝑚 ) ) | 
						
							| 65 | 44 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 66 | 50 | ad2antll | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  (  1s   /su  𝑚 )  ∈   No  ) | 
						
							| 67 |  | simpl | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  𝐴  ∈   No  ) | 
						
							| 68 | 65 66 67 | sltadd2d | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( (  -us  ‘ (  1s   /su  𝑛 ) )  <s  (  1s   /su  𝑚 )  ↔  ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) )  <s  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 69 | 64 68 | mpbid | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) )  <s  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 70 | 42 69 | eqbrtrd | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  <s  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 71 |  | breq12 | ⊢ ( ( 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) )  →  ( 𝑦  <s  𝑧  ↔  ( 𝐴  -s  (  1s   /su  𝑛 ) )  <s  ( 𝐴  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 72 | 70 71 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( ( 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) )  →  𝑦  <s  𝑧 ) ) | 
						
							| 73 | 72 | rexlimdvva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( 𝑦  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑚 ) ) )  →  𝑦  <s  𝑧 ) ) | 
						
							| 74 | 38 73 | biimtrid | ⊢ ( 𝐴  ∈   No   →  ( ( 𝑦  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∧  𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  →  𝑦  <s  𝑧 ) ) | 
						
							| 75 | 74 | 3impib | ⊢ ( ( 𝐴  ∈   No   ∧  𝑦  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ∧  𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  →  𝑦  <s  𝑧 ) | 
						
							| 76 | 3 5 16 22 75 | ssltd | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) |