Step |
Hyp |
Ref |
Expression |
1 |
|
nnsex |
⊢ ℕs ∈ V |
2 |
1
|
abrexex |
⊢ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∈ V |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∈ V ) |
4 |
1
|
abrexex |
⊢ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∈ V |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∈ V ) |
6 |
|
1sno |
⊢ 1s ∈ No |
7 |
6
|
a1i |
⊢ ( 𝑛 ∈ ℕs → 1s ∈ No ) |
8 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
9 |
|
nnne0s |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ≠ 0s ) |
10 |
7 8 9
|
divscld |
⊢ ( 𝑛 ∈ ℕs → ( 1s /su 𝑛 ) ∈ No ) |
11 |
|
subscl |
⊢ ( ( 𝐴 ∈ No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ No ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ No ) |
13 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝑥 ∈ No ↔ ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ No ) ) |
14 |
12 13
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → 𝑥 ∈ No ) ) |
15 |
14
|
rexlimdva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → 𝑥 ∈ No ) ) |
16 |
15
|
abssdv |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) |
17 |
|
addscl |
⊢ ( ( 𝐴 ∈ No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ No ) |
18 |
10 17
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ No ) |
19 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑥 ∈ No ↔ ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ No ) ) |
20 |
18 19
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → 𝑥 ∈ No ) ) |
21 |
20
|
rexlimdva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → 𝑥 ∈ No ) ) |
22 |
21
|
abssdv |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
26 |
23 25
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) |
27 |
|
vex |
⊢ 𝑧 ∈ V |
28 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1s /su 𝑛 ) = ( 1s /su 𝑚 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 +s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
33 |
32
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) |
34 |
29 33
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
35 |
27 34
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) |
36 |
26 35
|
anbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑚 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
37 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑚 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
38 |
36 37
|
bitr4i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
39 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → 𝐴 ∈ No ) |
40 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No ) |
41 |
39 40
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
43 |
10
|
negscld |
⊢ ( 𝑛 ∈ ℕs → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) |
44 |
43
|
adantr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) |
45 |
|
0sno |
⊢ 0s ∈ No |
46 |
45
|
a1i |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 0s ∈ No ) |
47 |
6
|
a1i |
⊢ ( 𝑚 ∈ ℕs → 1s ∈ No ) |
48 |
|
nnsno |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ No ) |
49 |
|
nnne0s |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ≠ 0s ) |
50 |
47 48 49
|
divscld |
⊢ ( 𝑚 ∈ ℕs → ( 1s /su 𝑚 ) ∈ No ) |
51 |
50
|
adantl |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 1s /su 𝑚 ) ∈ No ) |
52 |
|
id |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ ℕs ) |
53 |
52
|
nnsrecgt0d |
⊢ ( 𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛 ) ) |
54 |
45
|
a1i |
⊢ ( 𝑛 ∈ ℕs → 0s ∈ No ) |
55 |
54 10
|
sltnegd |
⊢ ( 𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛 ) ↔ ( -us ‘ ( 1s /su 𝑛 ) ) <s ( -us ‘ 0s ) ) ) |
56 |
53 55
|
mpbid |
⊢ ( 𝑛 ∈ ℕs → ( -us ‘ ( 1s /su 𝑛 ) ) <s ( -us ‘ 0s ) ) |
57 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
58 |
56 57
|
breqtrdi |
⊢ ( 𝑛 ∈ ℕs → ( -us ‘ ( 1s /su 𝑛 ) ) <s 0s ) |
59 |
58
|
adantr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) <s 0s ) |
60 |
|
id |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ ℕs ) |
61 |
60
|
nnsrecgt0d |
⊢ ( 𝑚 ∈ ℕs → 0s <s ( 1s /su 𝑚 ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 0s <s ( 1s /su 𝑚 ) ) |
63 |
44 46 51 59 62
|
slttrd |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) <s ( 1s /su 𝑚 ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( -us ‘ ( 1s /su 𝑛 ) ) <s ( 1s /su 𝑚 ) ) |
65 |
44
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) |
66 |
50
|
ad2antll |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( 1s /su 𝑚 ) ∈ No ) |
67 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → 𝐴 ∈ No ) |
68 |
65 66 67
|
sltadd2d |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( ( -us ‘ ( 1s /su 𝑛 ) ) <s ( 1s /su 𝑚 ) ↔ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) <s ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
69 |
64 68
|
mpbid |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) <s ( 𝐴 +s ( 1s /su 𝑚 ) ) ) |
70 |
42 69
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) <s ( 𝐴 +s ( 1s /su 𝑚 ) ) ) |
71 |
|
breq12 |
⊢ ( ( 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) → ( 𝑦 <s 𝑧 ↔ ( 𝐴 -s ( 1s /su 𝑛 ) ) <s ( 𝐴 +s ( 1s /su 𝑚 ) ) ) ) |
72 |
70 71
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( ( 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) → 𝑦 <s 𝑧 ) ) |
73 |
72
|
rexlimdvva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( 𝑦 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝐴 +s ( 1s /su 𝑚 ) ) ) → 𝑦 <s 𝑧 ) ) |
74 |
38 73
|
biimtrid |
⊢ ( 𝐴 ∈ No → ( ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) → 𝑦 <s 𝑧 ) ) |
75 |
74
|
3impib |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) → 𝑦 <s 𝑧 ) |
76 |
3 5 16 22 75
|
ssltd |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |