Step |
Hyp |
Ref |
Expression |
1 |
|
nnsex |
|- NN_s e. _V |
2 |
1
|
abrexex |
|- { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } e. _V |
3 |
2
|
a1i |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } e. _V ) |
4 |
1
|
abrexex |
|- { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } e. _V |
5 |
4
|
a1i |
|- ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } e. _V ) |
6 |
|
1sno |
|- 1s e. No |
7 |
6
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
8 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
9 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
10 |
7 8 9
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
11 |
|
subscl |
|- ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( A -s ( 1s /su n ) ) e. No ) |
12 |
10 11
|
sylan2 |
|- ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) e. No ) |
13 |
|
eleq1 |
|- ( x = ( A -s ( 1s /su n ) ) -> ( x e. No <-> ( A -s ( 1s /su n ) ) e. No ) ) |
14 |
12 13
|
syl5ibrcom |
|- ( ( A e. No /\ n e. NN_s ) -> ( x = ( A -s ( 1s /su n ) ) -> x e. No ) ) |
15 |
14
|
rexlimdva |
|- ( A e. No -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) -> x e. No ) ) |
16 |
15
|
abssdv |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) |
17 |
|
addscl |
|- ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( A +s ( 1s /su n ) ) e. No ) |
18 |
10 17
|
sylan2 |
|- ( ( A e. No /\ n e. NN_s ) -> ( A +s ( 1s /su n ) ) e. No ) |
19 |
|
eleq1 |
|- ( x = ( A +s ( 1s /su n ) ) -> ( x e. No <-> ( A +s ( 1s /su n ) ) e. No ) ) |
20 |
18 19
|
syl5ibrcom |
|- ( ( A e. No /\ n e. NN_s ) -> ( x = ( A +s ( 1s /su n ) ) -> x e. No ) ) |
21 |
20
|
rexlimdva |
|- ( A e. No -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) -> x e. No ) ) |
22 |
21
|
abssdv |
|- ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) |
23 |
|
vex |
|- y e. _V |
24 |
|
eqeq1 |
|- ( x = y -> ( x = ( A -s ( 1s /su n ) ) <-> y = ( A -s ( 1s /su n ) ) ) ) |
25 |
24
|
rexbidv |
|- ( x = y -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s y = ( A -s ( 1s /su n ) ) ) ) |
26 |
23 25
|
elab |
|- ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } <-> E. n e. NN_s y = ( A -s ( 1s /su n ) ) ) |
27 |
|
vex |
|- z e. _V |
28 |
|
eqeq1 |
|- ( x = z -> ( x = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su n ) ) ) ) |
29 |
28
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A +s ( 1s /su n ) ) ) ) |
30 |
|
oveq2 |
|- ( n = m -> ( 1s /su n ) = ( 1s /su m ) ) |
31 |
30
|
oveq2d |
|- ( n = m -> ( A +s ( 1s /su n ) ) = ( A +s ( 1s /su m ) ) ) |
32 |
31
|
eqeq2d |
|- ( n = m -> ( z = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su m ) ) ) ) |
33 |
32
|
cbvrexvw |
|- ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) |
34 |
29 33
|
bitrdi |
|- ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) |
35 |
27 34
|
elab |
|- ( z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) |
36 |
26 35
|
anbi12i |
|- ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> ( E. n e. NN_s y = ( A -s ( 1s /su n ) ) /\ E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) |
37 |
|
reeanv |
|- ( E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) <-> ( E. n e. NN_s y = ( A -s ( 1s /su n ) ) /\ E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) |
38 |
36 37
|
bitr4i |
|- ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) ) |
39 |
|
simpl |
|- ( ( A e. No /\ n e. NN_s ) -> A e. No ) |
40 |
10
|
adantl |
|- ( ( A e. No /\ n e. NN_s ) -> ( 1s /su n ) e. No ) |
41 |
39 40
|
subsvald |
|- ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) |
42 |
41
|
adantrr |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) |
43 |
10
|
negscld |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) e. No ) |
44 |
43
|
adantr |
|- ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) ) e. No ) |
45 |
|
0sno |
|- 0s e. No |
46 |
45
|
a1i |
|- ( ( n e. NN_s /\ m e. NN_s ) -> 0s e. No ) |
47 |
6
|
a1i |
|- ( m e. NN_s -> 1s e. No ) |
48 |
|
nnsno |
|- ( m e. NN_s -> m e. No ) |
49 |
|
nnne0s |
|- ( m e. NN_s -> m =/= 0s ) |
50 |
47 48 49
|
divscld |
|- ( m e. NN_s -> ( 1s /su m ) e. No ) |
51 |
50
|
adantl |
|- ( ( n e. NN_s /\ m e. NN_s ) -> ( 1s /su m ) e. No ) |
52 |
|
id |
|- ( n e. NN_s -> n e. NN_s ) |
53 |
52
|
nnsrecgt0d |
|- ( n e. NN_s -> 0s |
54 |
45
|
a1i |
|- ( n e. NN_s -> 0s e. No ) |
55 |
54 10
|
sltnegd |
|- ( n e. NN_s -> ( 0s ( -us ` ( 1s /su n ) ) |
56 |
53 55
|
mpbid |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) |
57 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
58 |
56 57
|
breqtrdi |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) |
59 |
58
|
adantr |
|- ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) ) |
60 |
|
id |
|- ( m e. NN_s -> m e. NN_s ) |
61 |
60
|
nnsrecgt0d |
|- ( m e. NN_s -> 0s |
62 |
61
|
adantl |
|- ( ( n e. NN_s /\ m e. NN_s ) -> 0s |
63 |
44 46 51 59 62
|
slttrd |
|- ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) ) |
64 |
63
|
adantl |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( -us ` ( 1s /su n ) ) |
65 |
44
|
adantl |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( -us ` ( 1s /su n ) ) e. No ) |
66 |
50
|
ad2antll |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( 1s /su m ) e. No ) |
67 |
|
simpl |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> A e. No ) |
68 |
65 66 67
|
sltadd2d |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( -us ` ( 1s /su n ) ) ( A +s ( -us ` ( 1s /su n ) ) ) |
69 |
64 68
|
mpbid |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A +s ( -us ` ( 1s /su n ) ) ) |
70 |
42 69
|
eqbrtrd |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A -s ( 1s /su n ) ) |
71 |
|
breq12 |
|- ( ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> ( y ( A -s ( 1s /su n ) ) |
72 |
70 71
|
syl5ibrcom |
|- ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> y |
73 |
72
|
rexlimdvva |
|- ( A e. No -> ( E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> y |
74 |
38 73
|
biimtrid |
|- ( A e. No -> ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) -> y |
75 |
74
|
3impib |
|- ( ( A e. No /\ y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) -> y |
76 |
3 5 16 22 75
|
ssltd |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |