| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsex |  |-  NN_s e. _V | 
						
							| 2 | 1 | abrexex |  |-  { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } e. _V | 
						
							| 3 | 2 | a1i |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } e. _V ) | 
						
							| 4 | 1 | abrexex |  |-  { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } e. _V | 
						
							| 5 | 4 | a1i |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } e. _V ) | 
						
							| 6 |  | 1sno |  |-  1s e. No | 
						
							| 7 | 6 | a1i |  |-  ( n e. NN_s -> 1s e. No ) | 
						
							| 8 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 9 |  | nnne0s |  |-  ( n e. NN_s -> n =/= 0s ) | 
						
							| 10 | 7 8 9 | divscld |  |-  ( n e. NN_s -> ( 1s /su n ) e. No ) | 
						
							| 11 |  | subscl |  |-  ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( A -s ( 1s /su n ) ) e. No ) | 
						
							| 12 | 10 11 | sylan2 |  |-  ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) e. No ) | 
						
							| 13 |  | eleq1 |  |-  ( x = ( A -s ( 1s /su n ) ) -> ( x e. No <-> ( A -s ( 1s /su n ) ) e. No ) ) | 
						
							| 14 | 12 13 | syl5ibrcom |  |-  ( ( A e. No /\ n e. NN_s ) -> ( x = ( A -s ( 1s /su n ) ) -> x e. No ) ) | 
						
							| 15 | 14 | rexlimdva |  |-  ( A e. No -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) -> x e. No ) ) | 
						
							| 16 | 15 | abssdv |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) | 
						
							| 17 |  | addscl |  |-  ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( A +s ( 1s /su n ) ) e. No ) | 
						
							| 18 | 10 17 | sylan2 |  |-  ( ( A e. No /\ n e. NN_s ) -> ( A +s ( 1s /su n ) ) e. No ) | 
						
							| 19 |  | eleq1 |  |-  ( x = ( A +s ( 1s /su n ) ) -> ( x e. No <-> ( A +s ( 1s /su n ) ) e. No ) ) | 
						
							| 20 | 18 19 | syl5ibrcom |  |-  ( ( A e. No /\ n e. NN_s ) -> ( x = ( A +s ( 1s /su n ) ) -> x e. No ) ) | 
						
							| 21 | 20 | rexlimdva |  |-  ( A e. No -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) -> x e. No ) ) | 
						
							| 22 | 21 | abssdv |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) | 
						
							| 23 |  | vex |  |-  y e. _V | 
						
							| 24 |  | eqeq1 |  |-  ( x = y -> ( x = ( A -s ( 1s /su n ) ) <-> y = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( x = y -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s y = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 26 | 23 25 | elab |  |-  ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } <-> E. n e. NN_s y = ( A -s ( 1s /su n ) ) ) | 
						
							| 27 |  | vex |  |-  z e. _V | 
						
							| 28 |  | eqeq1 |  |-  ( x = z -> ( x = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 29 | 28 | rexbidv |  |-  ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( n = m -> ( 1s /su n ) = ( 1s /su m ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( n = m -> ( A +s ( 1s /su n ) ) = ( A +s ( 1s /su m ) ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( n = m -> ( z = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su m ) ) ) ) | 
						
							| 33 | 32 | cbvrexvw |  |-  ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) | 
						
							| 34 | 29 33 | bitrdi |  |-  ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) | 
						
							| 35 | 27 34 | elab |  |-  ( z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } <-> E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) | 
						
							| 36 | 26 35 | anbi12i |  |-  ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> ( E. n e. NN_s y = ( A -s ( 1s /su n ) ) /\ E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) | 
						
							| 37 |  | reeanv |  |-  ( E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) <-> ( E. n e. NN_s y = ( A -s ( 1s /su n ) ) /\ E. m e. NN_s z = ( A +s ( 1s /su m ) ) ) ) | 
						
							| 38 | 36 37 | bitr4i |  |-  ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) ) | 
						
							| 39 |  | simpl |  |-  ( ( A e. No /\ n e. NN_s ) -> A e. No ) | 
						
							| 40 | 10 | adantl |  |-  ( ( A e. No /\ n e. NN_s ) -> ( 1s /su n ) e. No ) | 
						
							| 41 | 39 40 | subsvald |  |-  ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 42 | 41 | adantrr |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 43 | 10 | negscld |  |-  ( n e. NN_s -> ( -us ` ( 1s /su n ) ) e. No ) | 
						
							| 44 | 43 | adantr |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) ) e. No ) | 
						
							| 45 |  | 0sno |  |-  0s e. No | 
						
							| 46 | 45 | a1i |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> 0s e. No ) | 
						
							| 47 | 6 | a1i |  |-  ( m e. NN_s -> 1s e. No ) | 
						
							| 48 |  | nnsno |  |-  ( m e. NN_s -> m e. No ) | 
						
							| 49 |  | nnne0s |  |-  ( m e. NN_s -> m =/= 0s ) | 
						
							| 50 | 47 48 49 | divscld |  |-  ( m e. NN_s -> ( 1s /su m ) e. No ) | 
						
							| 51 | 50 | adantl |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( 1s /su m ) e. No ) | 
						
							| 52 |  | id |  |-  ( n e. NN_s -> n e. NN_s ) | 
						
							| 53 | 52 | nnsrecgt0d |  |-  ( n e. NN_s -> 0s  | 
						
							| 54 | 45 | a1i |  |-  ( n e. NN_s -> 0s e. No ) | 
						
							| 55 | 54 10 | sltnegd |  |-  ( n e. NN_s -> ( 0s  ( -us ` ( 1s /su n ) )  | 
						
							| 56 | 53 55 | mpbid |  |-  ( n e. NN_s -> ( -us ` ( 1s /su n ) )  | 
						
							| 57 |  | negs0s |  |-  ( -us ` 0s ) = 0s | 
						
							| 58 | 56 57 | breqtrdi |  |-  ( n e. NN_s -> ( -us ` ( 1s /su n ) )  | 
						
							| 59 | 58 | adantr |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) )  | 
						
							| 60 |  | id |  |-  ( m e. NN_s -> m e. NN_s ) | 
						
							| 61 | 60 | nnsrecgt0d |  |-  ( m e. NN_s -> 0s  | 
						
							| 62 | 61 | adantl |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> 0s  | 
						
							| 63 | 44 46 51 59 62 | slttrd |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( 1s /su n ) )  | 
						
							| 64 | 63 | adantl |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( -us ` ( 1s /su n ) )  | 
						
							| 65 | 44 | adantl |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( -us ` ( 1s /su n ) ) e. No ) | 
						
							| 66 | 50 | ad2antll |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( 1s /su m ) e. No ) | 
						
							| 67 |  | simpl |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> A e. No ) | 
						
							| 68 | 65 66 67 | sltadd2d |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( -us ` ( 1s /su n ) )  ( A +s ( -us ` ( 1s /su n ) ) )  | 
						
							| 69 | 64 68 | mpbid |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A +s ( -us ` ( 1s /su n ) ) )  | 
						
							| 70 | 42 69 | eqbrtrd |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( A -s ( 1s /su n ) )  | 
						
							| 71 |  | breq12 |  |-  ( ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> ( y  ( A -s ( 1s /su n ) )  | 
						
							| 72 | 70 71 | syl5ibrcom |  |-  ( ( A e. No /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> y  | 
						
							| 73 | 72 | rexlimdvva |  |-  ( A e. No -> ( E. n e. NN_s E. m e. NN_s ( y = ( A -s ( 1s /su n ) ) /\ z = ( A +s ( 1s /su m ) ) ) -> y  | 
						
							| 74 | 38 73 | biimtrid |  |-  ( A e. No -> ( ( y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) -> y  | 
						
							| 75 | 74 | 3impib |  |-  ( ( A e. No /\ y e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } /\ z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) -> y  | 
						
							| 76 | 3 5 16 22 75 | ssltd |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |