Step |
Hyp |
Ref |
Expression |
1 |
|
nnsex |
|
2 |
1
|
abrexex |
|
3 |
2
|
a1i |
|
4 |
1
|
abrexex |
|
5 |
4
|
a1i |
|
6 |
|
1sno |
|
7 |
6
|
a1i |
|
8 |
|
nnsno |
|
9 |
|
nnne0s |
|
10 |
7 8 9
|
divscld |
|
11 |
|
subscl |
|
12 |
10 11
|
sylan2 |
|
13 |
|
eleq1 |
|
14 |
12 13
|
syl5ibrcom |
|
15 |
14
|
rexlimdva |
|
16 |
15
|
abssdv |
|
17 |
|
addscl |
|
18 |
10 17
|
sylan2 |
|
19 |
|
eleq1 |
|
20 |
18 19
|
syl5ibrcom |
|
21 |
20
|
rexlimdva |
|
22 |
21
|
abssdv |
|
23 |
|
vex |
|
24 |
|
eqeq1 |
|
25 |
24
|
rexbidv |
|
26 |
23 25
|
elab |
|
27 |
|
vex |
|
28 |
|
eqeq1 |
|
29 |
28
|
rexbidv |
|
30 |
|
oveq2 |
|
31 |
30
|
oveq2d |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
cbvrexvw |
|
34 |
29 33
|
bitrdi |
|
35 |
27 34
|
elab |
|
36 |
26 35
|
anbi12i |
|
37 |
|
reeanv |
|
38 |
36 37
|
bitr4i |
|
39 |
|
simpl |
|
40 |
10
|
adantl |
|
41 |
39 40
|
subsvald |
|
42 |
41
|
adantrr |
|
43 |
10
|
negscld |
|
44 |
43
|
adantr |
|
45 |
|
0sno |
|
46 |
45
|
a1i |
|
47 |
6
|
a1i |
|
48 |
|
nnsno |
|
49 |
|
nnne0s |
|
50 |
47 48 49
|
divscld |
|
51 |
50
|
adantl |
|
52 |
|
id |
|
53 |
52
|
nnsrecgt0d |
|
54 |
45
|
a1i |
|
55 |
54 10
|
sltnegd |
|
56 |
53 55
|
mpbid |
|
57 |
|
negs0s |
|
58 |
56 57
|
breqtrdi |
|
59 |
58
|
adantr |
|
60 |
|
id |
|
61 |
60
|
nnsrecgt0d |
|
62 |
61
|
adantl |
|
63 |
44 46 51 59 62
|
slttrd |
|
64 |
63
|
adantl |
|
65 |
44
|
adantl |
|
66 |
50
|
ad2antll |
|
67 |
|
simpl |
|
68 |
65 66 67
|
sltadd2d |
|
69 |
64 68
|
mpbid |
|
70 |
42 69
|
eqbrtrd |
|
71 |
|
breq12 |
|
72 |
70 71
|
syl5ibrcom |
|
73 |
72
|
rexlimdvva |
|
74 |
38 73
|
biimtrid |
|
75 |
74
|
3impib |
|
76 |
3 5 16 22 75
|
ssltd |
|