Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
|- 0s e. No |
2 |
|
1nns |
|- 1s e. NN_s |
3 |
|
0slt1s |
|- 0s |
4 |
|
1sno |
|- 1s e. No |
5 |
|
sltneg |
|- ( ( 0s e. No /\ 1s e. No ) -> ( 0s ( -us ` 1s ) |
6 |
1 4 5
|
mp2an |
|- ( 0s ( -us ` 1s ) |
7 |
3 6
|
mpbi |
|- ( -us ` 1s ) |
8 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
9 |
7 8
|
breqtri |
|- ( -us ` 1s ) |
10 |
9 3
|
pm3.2i |
|- ( ( -us ` 1s ) |
11 |
|
fveq2 |
|- ( n = 1s -> ( -us ` n ) = ( -us ` 1s ) ) |
12 |
11
|
breq1d |
|- ( n = 1s -> ( ( -us ` n ) ( -us ` 1s ) |
13 |
|
breq2 |
|- ( n = 1s -> ( 0s 0s |
14 |
12 13
|
anbi12d |
|- ( n = 1s -> ( ( ( -us ` n ) ( ( -us ` 1s ) |
15 |
14
|
rspcev |
|- ( ( 1s e. NN_s /\ ( ( -us ` 1s ) E. n e. NN_s ( ( -us ` n ) |
16 |
2 10 15
|
mp2an |
|- E. n e. NN_s ( ( -us ` n ) |
17 |
4
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
18 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
19 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
20 |
17 18 19
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
21 |
20
|
negsval2d |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) = ( 0s -s ( 1s /su n ) ) ) |
22 |
21
|
eqeq2d |
|- ( n e. NN_s -> ( x = ( -us ` ( 1s /su n ) ) <-> x = ( 0s -s ( 1s /su n ) ) ) ) |
23 |
22
|
bicomd |
|- ( n e. NN_s -> ( x = ( 0s -s ( 1s /su n ) ) <-> x = ( -us ` ( 1s /su n ) ) ) ) |
24 |
23
|
rexbiia |
|- ( E. n e. NN_s x = ( 0s -s ( 1s /su n ) ) <-> E. n e. NN_s x = ( -us ` ( 1s /su n ) ) ) |
25 |
24
|
abbii |
|- { x | E. n e. NN_s x = ( 0s -s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } |
26 |
|
addslid |
|- ( ( 1s /su n ) e. No -> ( 0s +s ( 1s /su n ) ) = ( 1s /su n ) ) |
27 |
20 26
|
syl |
|- ( n e. NN_s -> ( 0s +s ( 1s /su n ) ) = ( 1s /su n ) ) |
28 |
27
|
eqeq2d |
|- ( n e. NN_s -> ( x = ( 0s +s ( 1s /su n ) ) <-> x = ( 1s /su n ) ) ) |
29 |
28
|
rexbiia |
|- ( E. n e. NN_s x = ( 0s +s ( 1s /su n ) ) <-> E. n e. NN_s x = ( 1s /su n ) ) |
30 |
29
|
abbii |
|- { x | E. n e. NN_s x = ( 0s +s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( 1s /su n ) } |
31 |
25 30
|
oveq12i |
|- ( { x | E. n e. NN_s x = ( 0s -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( 0s +s ( 1s /su n ) ) } ) = ( { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( 1s /su n ) } ) |
32 |
|
nnsex |
|- NN_s e. _V |
33 |
32
|
abrexex |
|- { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } e. _V |
34 |
33
|
a1i |
|- ( T. -> { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } e. _V ) |
35 |
|
snex |
|- { 0s } e. _V |
36 |
35
|
a1i |
|- ( T. -> { 0s } e. _V ) |
37 |
20
|
negscld |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) e. No ) |
38 |
|
eleq1 |
|- ( x = ( -us ` ( 1s /su n ) ) -> ( x e. No <-> ( -us ` ( 1s /su n ) ) e. No ) ) |
39 |
37 38
|
syl5ibrcom |
|- ( n e. NN_s -> ( x = ( -us ` ( 1s /su n ) ) -> x e. No ) ) |
40 |
39
|
rexlimiv |
|- ( E. n e. NN_s x = ( -us ` ( 1s /su n ) ) -> x e. No ) |
41 |
40
|
a1i |
|- ( T. -> ( E. n e. NN_s x = ( -us ` ( 1s /su n ) ) -> x e. No ) ) |
42 |
41
|
abssdv |
|- ( T. -> { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } C_ No ) |
43 |
1
|
a1i |
|- ( T. -> 0s e. No ) |
44 |
43
|
snssd |
|- ( T. -> { 0s } C_ No ) |
45 |
|
vex |
|- z e. _V |
46 |
|
eqeq1 |
|- ( x = z -> ( x = ( -us ` ( 1s /su n ) ) <-> z = ( -us ` ( 1s /su n ) ) ) ) |
47 |
46
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( -us ` ( 1s /su n ) ) <-> E. n e. NN_s z = ( -us ` ( 1s /su n ) ) ) ) |
48 |
45 47
|
elab |
|- ( z e. { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } <-> E. n e. NN_s z = ( -us ` ( 1s /su n ) ) ) |
49 |
|
velsn |
|- ( y e. { 0s } <-> y = 0s ) |
50 |
48 49
|
anbi12i |
|- ( ( z e. { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } /\ y e. { 0s } ) <-> ( E. n e. NN_s z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) ) |
51 |
|
r19.41v |
|- ( E. n e. NN_s ( z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) <-> ( E. n e. NN_s z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) ) |
52 |
50 51
|
bitr4i |
|- ( ( z e. { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } /\ y e. { 0s } ) <-> E. n e. NN_s ( z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) ) |
53 |
|
muls02 |
|- ( n e. No -> ( 0s x.s n ) = 0s ) |
54 |
18 53
|
syl |
|- ( n e. NN_s -> ( 0s x.s n ) = 0s ) |
55 |
54 3
|
eqbrtrdi |
|- ( n e. NN_s -> ( 0s x.s n ) |
56 |
1
|
a1i |
|- ( n e. NN_s -> 0s e. No ) |
57 |
|
nnsgt0 |
|- ( n e. NN_s -> 0s |
58 |
56 17 18 57
|
sltmuldivd |
|- ( n e. NN_s -> ( ( 0s x.s n ) 0s |
59 |
55 58
|
mpbid |
|- ( n e. NN_s -> 0s |
60 |
20
|
slt0neg2d |
|- ( n e. NN_s -> ( 0s ( -us ` ( 1s /su n ) ) |
61 |
59 60
|
mpbid |
|- ( n e. NN_s -> ( -us ` ( 1s /su n ) ) |
62 |
|
breq12 |
|- ( ( z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) -> ( z ( -us ` ( 1s /su n ) ) |
63 |
61 62
|
syl5ibrcom |
|- ( n e. NN_s -> ( ( z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) -> z |
64 |
63
|
rexlimiv |
|- ( E. n e. NN_s ( z = ( -us ` ( 1s /su n ) ) /\ y = 0s ) -> z |
65 |
52 64
|
sylbi |
|- ( ( z e. { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } /\ y e. { 0s } ) -> z |
66 |
65
|
3adant1 |
|- ( ( T. /\ z e. { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } /\ y e. { 0s } ) -> z |
67 |
34 36 42 44 66
|
ssltd |
|- ( T. -> { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } < |
68 |
32
|
abrexex |
|- { x | E. n e. NN_s x = ( 1s /su n ) } e. _V |
69 |
68
|
a1i |
|- ( T. -> { x | E. n e. NN_s x = ( 1s /su n ) } e. _V ) |
70 |
|
eleq1 |
|- ( x = ( 1s /su n ) -> ( x e. No <-> ( 1s /su n ) e. No ) ) |
71 |
20 70
|
syl5ibrcom |
|- ( n e. NN_s -> ( x = ( 1s /su n ) -> x e. No ) ) |
72 |
71
|
rexlimiv |
|- ( E. n e. NN_s x = ( 1s /su n ) -> x e. No ) |
73 |
72
|
a1i |
|- ( T. -> ( E. n e. NN_s x = ( 1s /su n ) -> x e. No ) ) |
74 |
73
|
abssdv |
|- ( T. -> { x | E. n e. NN_s x = ( 1s /su n ) } C_ No ) |
75 |
|
eqeq1 |
|- ( x = z -> ( x = ( 1s /su n ) <-> z = ( 1s /su n ) ) ) |
76 |
75
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( 1s /su n ) <-> E. n e. NN_s z = ( 1s /su n ) ) ) |
77 |
45 76
|
elab |
|- ( z e. { x | E. n e. NN_s x = ( 1s /su n ) } <-> E. n e. NN_s z = ( 1s /su n ) ) |
78 |
49 77
|
anbi12i |
|- ( ( y e. { 0s } /\ z e. { x | E. n e. NN_s x = ( 1s /su n ) } ) <-> ( y = 0s /\ E. n e. NN_s z = ( 1s /su n ) ) ) |
79 |
|
r19.42v |
|- ( E. n e. NN_s ( y = 0s /\ z = ( 1s /su n ) ) <-> ( y = 0s /\ E. n e. NN_s z = ( 1s /su n ) ) ) |
80 |
78 79
|
bitr4i |
|- ( ( y e. { 0s } /\ z e. { x | E. n e. NN_s x = ( 1s /su n ) } ) <-> E. n e. NN_s ( y = 0s /\ z = ( 1s /su n ) ) ) |
81 |
|
breq12 |
|- ( ( y = 0s /\ z = ( 1s /su n ) ) -> ( y 0s |
82 |
59 81
|
syl5ibrcom |
|- ( n e. NN_s -> ( ( y = 0s /\ z = ( 1s /su n ) ) -> y |
83 |
82
|
rexlimiv |
|- ( E. n e. NN_s ( y = 0s /\ z = ( 1s /su n ) ) -> y |
84 |
83
|
a1i |
|- ( T. -> ( E. n e. NN_s ( y = 0s /\ z = ( 1s /su n ) ) -> y |
85 |
80 84
|
biimtrid |
|- ( T. -> ( ( y e. { 0s } /\ z e. { x | E. n e. NN_s x = ( 1s /su n ) } ) -> y |
86 |
85
|
3impib |
|- ( ( T. /\ y e. { 0s } /\ z e. { x | E. n e. NN_s x = ( 1s /su n ) } ) -> y |
87 |
36 69 44 74 86
|
ssltd |
|- ( T. -> { 0s } < |
88 |
67 87
|
cuteq0 |
|- ( T. -> ( { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( 1s /su n ) } ) = 0s ) |
89 |
88
|
mptru |
|- ( { x | E. n e. NN_s x = ( -us ` ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( 1s /su n ) } ) = 0s |
90 |
31 89
|
eqtr2i |
|- 0s = ( { x | E. n e. NN_s x = ( 0s -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( 0s +s ( 1s /su n ) ) } ) |
91 |
16 90
|
pm3.2i |
|- ( E. n e. NN_s ( ( -us ` n ) |
92 |
|
elreno |
|- ( 0s e. RR_s <-> ( 0s e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
93 |
1 91 92
|
mpbir2an |
|- 0s e. RR_s |