Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
2 |
1
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) e. No ) |
3 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
4 |
3
|
adantl |
|- ( ( A e. No /\ n e. NN_s ) -> n e. No ) |
5 |
4
|
negscld |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` n ) e. No ) |
6 |
|
simpl |
|- ( ( A e. No /\ n e. NN_s ) -> A e. No ) |
7 |
5 6
|
sltnegd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n ) ( -us ` A ) |
8 |
|
negnegs |
|- ( n e. No -> ( -us ` ( -us ` n ) ) = n ) |
9 |
4 8
|
syl |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` n ) ) = n ) |
10 |
9
|
breq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) ( -us ` A ) |
11 |
7 10
|
bitrd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n ) ( -us ` A ) |
12 |
6 4
|
sltnegd |
|- ( ( A e. No /\ n e. NN_s ) -> ( A ( -us ` n ) |
13 |
11 12
|
anbi12d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n ) ( ( -us ` A ) |
14 |
13
|
biancomd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n ) ( ( -us ` n ) |
15 |
14
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
16 |
15
|
biimpa |
|- ( ( A e. No /\ E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
17 |
16
|
adantrr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
18 |
|
recut |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
19 |
18
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
20 |
|
simprr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
21 |
19 20
|
negsunif |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) = ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) ) |
22 |
|
negsfn |
|- -us Fn No |
23 |
|
ssltss2 |
|- ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) |
24 |
18 23
|
syl |
|- ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) |
25 |
|
fvelimab |
|- ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
26 |
22 24 25
|
sylancr |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
27 |
|
eqeq1 |
|- ( x = z -> ( x = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su n ) ) ) ) |
28 |
27
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A +s ( 1s /su n ) ) ) ) |
29 |
28
|
rexab |
|- ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
30 |
|
rexcom4 |
|- ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
31 |
|
ovex |
|- ( A +s ( 1s /su n ) ) e. _V |
32 |
|
fveqeq2 |
|- ( z = ( A +s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) ) |
33 |
31 32
|
ceqsexv |
|- ( E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
34 |
33
|
rexbii |
|- ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
35 |
|
r19.41v |
|- ( E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
36 |
35
|
exbii |
|- ( E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
37 |
30 34 36
|
3bitr3ri |
|- ( E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
38 |
29 37
|
bitri |
|- ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
39 |
|
1sno |
|- 1s e. No |
40 |
39
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
41 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
42 |
40 3 41
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
43 |
42
|
adantl |
|- ( ( A e. No /\ n e. NN_s ) -> ( 1s /su n ) e. No ) |
44 |
|
negsdi |
|- ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
45 |
43 44
|
syldan |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
46 |
1
|
adantr |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` A ) e. No ) |
47 |
46 43
|
subsvald |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) -s ( 1s /su n ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
48 |
45 47
|
eqtr4d |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) -s ( 1s /su n ) ) ) |
49 |
48
|
eqeq1d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) -s ( 1s /su n ) ) = y ) ) |
50 |
|
eqcom |
|- ( ( ( -us ` A ) -s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) |
51 |
49 50
|
bitrdi |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
52 |
51
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
53 |
38 52
|
bitrid |
|- ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
54 |
26 53
|
bitrd |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
55 |
54
|
eqabdv |
|- ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } ) |
56 |
|
ssltss1 |
|- ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) |
57 |
18 56
|
syl |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) |
58 |
|
fvelimab |
|- ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
59 |
22 57 58
|
sylancr |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
60 |
|
eqeq1 |
|- ( x = z -> ( x = ( A -s ( 1s /su n ) ) <-> z = ( A -s ( 1s /su n ) ) ) ) |
61 |
60
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A -s ( 1s /su n ) ) ) ) |
62 |
61
|
rexab |
|- ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
63 |
|
rexcom4 |
|- ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
64 |
|
ovex |
|- ( A -s ( 1s /su n ) ) e. _V |
65 |
|
fveqeq2 |
|- ( z = ( A -s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) ) |
66 |
64 65
|
ceqsexv |
|- ( E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
67 |
66
|
rexbii |
|- ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
68 |
|
r19.41v |
|- ( E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
69 |
68
|
exbii |
|- ( E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
70 |
63 67 69
|
3bitr3ri |
|- ( E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
71 |
62 70
|
bitri |
|- ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
72 |
6 43
|
subsvald |
|- ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) |
73 |
72
|
fveq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) ) |
74 |
43
|
negscld |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( 1s /su n ) ) e. No ) |
75 |
|
negsdi |
|- ( ( A e. No /\ ( -us ` ( 1s /su n ) ) e. No ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) |
76 |
74 75
|
syldan |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) |
77 |
|
negnegs |
|- ( ( 1s /su n ) e. No -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) |
78 |
43 77
|
syl |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) |
79 |
78
|
oveq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
80 |
73 76 79
|
3eqtrd |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
81 |
80
|
eqeq1d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) +s ( 1s /su n ) ) = y ) ) |
82 |
|
eqcom |
|- ( ( ( -us ` A ) +s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
83 |
81 82
|
bitrdi |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
84 |
83
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
85 |
71 84
|
bitrid |
|- ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
86 |
59 85
|
bitrd |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
87 |
86
|
eqabdv |
|- ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) |
88 |
55 87
|
oveq12d |
|- ( A e. No -> ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
89 |
88
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
90 |
21 89
|
eqtrd |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
91 |
2 17 90
|
jca32 |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
92 |
|
elreno |
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
93 |
|
elreno |
|- ( ( -us ` A ) e. RR_s <-> ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
94 |
91 92 93
|
3imtr4i |
|- ( A e. RR_s -> ( -us ` A ) e. RR_s ) |