| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
| 2 |
1
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) e. No ) |
| 3 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
| 4 |
3
|
adantl |
|- ( ( A e. No /\ n e. NN_s ) -> n e. No ) |
| 5 |
4
|
negscld |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` n ) e. No ) |
| 6 |
|
simpl |
|- ( ( A e. No /\ n e. NN_s ) -> A e. No ) |
| 7 |
5 6
|
sltnegd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n ) ( -us ` A ) |
| 8 |
|
negnegs |
|- ( n e. No -> ( -us ` ( -us ` n ) ) = n ) |
| 9 |
4 8
|
syl |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` n ) ) = n ) |
| 10 |
9
|
breq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) ( -us ` A ) |
| 11 |
7 10
|
bitrd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n ) ( -us ` A ) |
| 12 |
6 4
|
sltnegd |
|- ( ( A e. No /\ n e. NN_s ) -> ( A ( -us ` n ) |
| 13 |
11 12
|
anbi12d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n ) ( ( -us ` A ) |
| 14 |
13
|
biancomd |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n ) ( ( -us ` n ) |
| 15 |
14
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
| 16 |
15
|
biimpa |
|- ( ( A e. No /\ E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
| 17 |
16
|
adantrr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
| 18 |
|
recut |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 19 |
18
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 20 |
|
simprr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
| 21 |
19 20
|
negsunif |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) = ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) ) |
| 22 |
|
negsfn |
|- -us Fn No |
| 23 |
|
ssltss2 |
|- ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) |
| 24 |
18 23
|
syl |
|- ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) |
| 25 |
|
fvelimab |
|- ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
| 26 |
22 24 25
|
sylancr |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
| 27 |
|
eqeq1 |
|- ( x = z -> ( x = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su n ) ) ) ) |
| 28 |
27
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A +s ( 1s /su n ) ) ) ) |
| 29 |
28
|
rexab |
|- ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 30 |
|
rexcom4 |
|- ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 31 |
|
ovex |
|- ( A +s ( 1s /su n ) ) e. _V |
| 32 |
|
fveqeq2 |
|- ( z = ( A +s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) ) |
| 33 |
31 32
|
ceqsexv |
|- ( E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
| 34 |
33
|
rexbii |
|- ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
| 35 |
|
r19.41v |
|- ( E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 36 |
35
|
exbii |
|- ( E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 37 |
30 34 36
|
3bitr3ri |
|- ( E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
| 38 |
29 37
|
bitri |
|- ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) |
| 39 |
|
1sno |
|- 1s e. No |
| 40 |
39
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
| 41 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
| 42 |
40 3 41
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
| 43 |
42
|
adantl |
|- ( ( A e. No /\ n e. NN_s ) -> ( 1s /su n ) e. No ) |
| 44 |
|
negsdi |
|- ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
| 45 |
43 44
|
syldan |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
| 46 |
1
|
adantr |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` A ) e. No ) |
| 47 |
46 43
|
subsvald |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) -s ( 1s /su n ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) |
| 48 |
45 47
|
eqtr4d |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) -s ( 1s /su n ) ) ) |
| 49 |
48
|
eqeq1d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) -s ( 1s /su n ) ) = y ) ) |
| 50 |
|
eqcom |
|- ( ( ( -us ` A ) -s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) |
| 51 |
49 50
|
bitrdi |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
| 52 |
51
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
| 53 |
38 52
|
bitrid |
|- ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
| 54 |
26 53
|
bitrd |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) |
| 55 |
54
|
eqabdv |
|- ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } ) |
| 56 |
|
ssltss1 |
|- ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) |
| 57 |
18 56
|
syl |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) |
| 58 |
|
fvelimab |
|- ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
| 59 |
22 57 58
|
sylancr |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) |
| 60 |
|
eqeq1 |
|- ( x = z -> ( x = ( A -s ( 1s /su n ) ) <-> z = ( A -s ( 1s /su n ) ) ) ) |
| 61 |
60
|
rexbidv |
|- ( x = z -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A -s ( 1s /su n ) ) ) ) |
| 62 |
61
|
rexab |
|- ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 63 |
|
rexcom4 |
|- ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 64 |
|
ovex |
|- ( A -s ( 1s /su n ) ) e. _V |
| 65 |
|
fveqeq2 |
|- ( z = ( A -s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) ) |
| 66 |
64 65
|
ceqsexv |
|- ( E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
| 67 |
66
|
rexbii |
|- ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
| 68 |
|
r19.41v |
|- ( E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 69 |
68
|
exbii |
|- ( E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) |
| 70 |
63 67 69
|
3bitr3ri |
|- ( E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
| 71 |
62 70
|
bitri |
|- ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) |
| 72 |
6 43
|
subsvald |
|- ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) |
| 73 |
72
|
fveq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) ) |
| 74 |
43
|
negscld |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( 1s /su n ) ) e. No ) |
| 75 |
|
negsdi |
|- ( ( A e. No /\ ( -us ` ( 1s /su n ) ) e. No ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) |
| 76 |
74 75
|
syldan |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) |
| 77 |
|
negnegs |
|- ( ( 1s /su n ) e. No -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) |
| 78 |
43 77
|
syl |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) |
| 79 |
78
|
oveq2d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
| 80 |
73 76 79
|
3eqtrd |
|- ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
| 81 |
80
|
eqeq1d |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) +s ( 1s /su n ) ) = y ) ) |
| 82 |
|
eqcom |
|- ( ( ( -us ` A ) +s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) |
| 83 |
81 82
|
bitrdi |
|- ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
| 84 |
83
|
rexbidva |
|- ( A e. No -> ( E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
| 85 |
71 84
|
bitrid |
|- ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
| 86 |
59 85
|
bitrd |
|- ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) |
| 87 |
86
|
eqabdv |
|- ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) |
| 88 |
55 87
|
oveq12d |
|- ( A e. No -> ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
| 89 |
88
|
adantr |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
| 90 |
21 89
|
eqtrd |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( -us ` A ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) |
| 91 |
2 17 90
|
jca32 |
|- ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 92 |
|
elreno |
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 93 |
|
elreno |
|- ( ( -us ` A ) e. RR_s <-> ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 94 |
91 92 93
|
3imtr4i |
|- ( A e. RR_s -> ( -us ` A ) e. RR_s ) |