| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl |  |-  ( A e. No -> ( -us ` A ) e. No ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( -us ` A ) e. No ) | 
						
							| 3 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. No /\ n e. NN_s ) -> n e. No ) | 
						
							| 5 | 4 | negscld |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` n ) e. No ) | 
						
							| 6 |  | simpl |  |-  ( ( A e. No /\ n e. NN_s ) -> A e. No ) | 
						
							| 7 | 5 6 | sltnegd |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n )  ( -us ` A )  | 
						
							| 8 |  | negnegs |  |-  ( n e. No -> ( -us ` ( -us ` n ) ) = n ) | 
						
							| 9 | 4 8 | syl |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` n ) ) = n ) | 
						
							| 10 | 9 | breq2d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A )  ( -us ` A )  | 
						
							| 11 | 7 10 | bitrd |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` n )  ( -us ` A )  | 
						
							| 12 | 6 4 | sltnegd |  |-  ( ( A e. No /\ n e. NN_s ) -> ( A  ( -us ` n )  | 
						
							| 13 | 11 12 | anbi12d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n )  ( ( -us ` A )  | 
						
							| 14 | 13 | biancomd |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( ( -us ` n )  ( ( -us ` n )  | 
						
							| 15 | 14 | rexbidva |  |-  ( A e. No -> ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 16 | 15 | biimpa |  |-  ( ( A e. No /\ E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 17 | 16 | adantrr |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 18 |  | recut |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 20 |  | simprr |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 21 | 19 20 | negsunif |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( -us ` A ) = ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) ) | 
						
							| 22 |  | negsfn |  |-  -us Fn No | 
						
							| 23 |  | ssltss2 |  |-  ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) | 
						
							| 24 | 18 23 | syl |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) | 
						
							| 25 |  | fvelimab |  |-  ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) | 
						
							| 26 | 22 24 25 | sylancr |  |-  ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y ) ) | 
						
							| 27 |  | eqeq1 |  |-  ( x = z -> ( x = ( A +s ( 1s /su n ) ) <-> z = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 28 | 27 | rexbidv |  |-  ( x = z -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 29 | 28 | rexab |  |-  ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 30 |  | rexcom4 |  |-  ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 31 |  | ovex |  |-  ( A +s ( 1s /su n ) ) e. _V | 
						
							| 32 |  | fveqeq2 |  |-  ( z = ( A +s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) ) | 
						
							| 33 | 31 32 | ceqsexv |  |-  ( E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A +s ( 1s /su n ) ) ) = y ) | 
						
							| 34 | 33 | rexbii |  |-  ( E. n e. NN_s E. z ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) | 
						
							| 35 |  | r19.41v |  |-  ( E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 36 | 35 | exbii |  |-  ( E. z E. n e. NN_s ( z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 37 | 30 34 36 | 3bitr3ri |  |-  ( E. z ( E. n e. NN_s z = ( A +s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) | 
						
							| 38 | 29 37 | bitri |  |-  ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y ) | 
						
							| 39 |  | 1sno |  |-  1s e. No | 
						
							| 40 | 39 | a1i |  |-  ( n e. NN_s -> 1s e. No ) | 
						
							| 41 |  | nnne0s |  |-  ( n e. NN_s -> n =/= 0s ) | 
						
							| 42 | 40 3 41 | divscld |  |-  ( n e. NN_s -> ( 1s /su n ) e. No ) | 
						
							| 43 | 42 | adantl |  |-  ( ( A e. No /\ n e. NN_s ) -> ( 1s /su n ) e. No ) | 
						
							| 44 |  | negsdi |  |-  ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 45 | 43 44 | syldan |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 46 | 1 | adantr |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` A ) e. No ) | 
						
							| 47 | 46 43 | subsvald |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) -s ( 1s /su n ) ) = ( ( -us ` A ) +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 48 | 45 47 | eqtr4d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( 1s /su n ) ) ) = ( ( -us ` A ) -s ( 1s /su n ) ) ) | 
						
							| 49 | 48 | eqeq1d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) -s ( 1s /su n ) ) = y ) ) | 
						
							| 50 |  | eqcom |  |-  ( ( ( -us ` A ) -s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) | 
						
							| 51 | 49 50 | bitrdi |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) | 
						
							| 52 | 51 | rexbidva |  |-  ( A e. No -> ( E. n e. NN_s ( -us ` ( A +s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) | 
						
							| 53 | 38 52 | bitrid |  |-  ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) | 
						
							| 54 | 26 53 | bitrd |  |-  ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) ) ) | 
						
							| 55 | 54 | eqabdv |  |-  ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } ) | 
						
							| 56 |  | ssltss1 |  |-  ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) | 
						
							| 57 | 18 56 | syl |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) | 
						
							| 58 |  | fvelimab |  |-  ( ( -us Fn No /\ { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } C_ No ) -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) | 
						
							| 59 | 22 57 58 | sylancr |  |-  ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y ) ) | 
						
							| 60 |  | eqeq1 |  |-  ( x = z -> ( x = ( A -s ( 1s /su n ) ) <-> z = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 61 | 60 | rexbidv |  |-  ( x = z -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s z = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 62 | 61 | rexab |  |-  ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 63 |  | rexcom4 |  |-  ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 64 |  | ovex |  |-  ( A -s ( 1s /su n ) ) e. _V | 
						
							| 65 |  | fveqeq2 |  |-  ( z = ( A -s ( 1s /su n ) ) -> ( ( -us ` z ) = y <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) ) | 
						
							| 66 | 64 65 | ceqsexv |  |-  ( E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( -us ` ( A -s ( 1s /su n ) ) ) = y ) | 
						
							| 67 | 66 | rexbii |  |-  ( E. n e. NN_s E. z ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) | 
						
							| 68 |  | r19.41v |  |-  ( E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 69 | 68 | exbii |  |-  ( E. z E. n e. NN_s ( z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) ) | 
						
							| 70 | 63 67 69 | 3bitr3ri |  |-  ( E. z ( E. n e. NN_s z = ( A -s ( 1s /su n ) ) /\ ( -us ` z ) = y ) <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) | 
						
							| 71 | 62 70 | bitri |  |-  ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y ) | 
						
							| 72 | 6 43 | subsvald |  |-  ( ( A e. No /\ n e. NN_s ) -> ( A -s ( 1s /su n ) ) = ( A +s ( -us ` ( 1s /su n ) ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) ) | 
						
							| 74 | 43 | negscld |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( 1s /su n ) ) e. No ) | 
						
							| 75 |  | negsdi |  |-  ( ( A e. No /\ ( -us ` ( 1s /su n ) ) e. No ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) | 
						
							| 76 | 74 75 | syldan |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A +s ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) ) | 
						
							| 77 |  | negnegs |  |-  ( ( 1s /su n ) e. No -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) | 
						
							| 78 | 43 77 | syl |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( -us ` ( 1s /su n ) ) ) = ( 1s /su n ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` A ) +s ( -us ` ( -us ` ( 1s /su n ) ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) | 
						
							| 80 | 73 76 79 | 3eqtrd |  |-  ( ( A e. No /\ n e. NN_s ) -> ( -us ` ( A -s ( 1s /su n ) ) ) = ( ( -us ` A ) +s ( 1s /su n ) ) ) | 
						
							| 81 | 80 | eqeq1d |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> ( ( -us ` A ) +s ( 1s /su n ) ) = y ) ) | 
						
							| 82 |  | eqcom |  |-  ( ( ( -us ` A ) +s ( 1s /su n ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) | 
						
							| 83 | 81 82 | bitrdi |  |-  ( ( A e. No /\ n e. NN_s ) -> ( ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) | 
						
							| 84 | 83 | rexbidva |  |-  ( A e. No -> ( E. n e. NN_s ( -us ` ( A -s ( 1s /su n ) ) ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) | 
						
							| 85 | 71 84 | bitrid |  |-  ( A e. No -> ( E. z e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ( -us ` z ) = y <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) | 
						
							| 86 | 59 85 | bitrd |  |-  ( A e. No -> ( y e. ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) <-> E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) ) ) | 
						
							| 87 | 86 | eqabdv |  |-  ( A e. No -> ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) = { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) | 
						
							| 88 | 55 87 | oveq12d |  |-  ( A e. No -> ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( ( -us " { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |s ( -us " { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) | 
						
							| 90 | 21 89 | eqtrd |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( -us ` A ) = ( { y | E. n e. NN_s y = ( ( -us ` A ) -s ( 1s /su n ) ) } |s { y | E. n e. NN_s y = ( ( -us ` A ) +s ( 1s /su n ) ) } ) ) | 
						
							| 91 | 2 17 90 | jca32 |  |-  ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 92 |  | elreno |  |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 93 |  | elreno |  |-  ( ( -us ` A ) e. RR_s <-> ( ( -us ` A ) e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 94 | 91 92 93 | 3imtr4i |  |-  ( A e. RR_s -> ( -us ` A ) e. RR_s ) |