| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addscl |  |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A +s B ) e. No ) | 
						
							| 3 |  | nnaddscl |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( n +s m ) e. NN_s ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( n +s m ) e. NN_s ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( n +s m ) e. NN_s ) | 
						
							| 6 |  | simprll |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  n e. NN_s ) | 
						
							| 7 | 6 | nnsnod |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  n e. No ) | 
						
							| 8 |  | simprlr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  m e. NN_s ) | 
						
							| 9 | 8 | nnsnod |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  m e. No ) | 
						
							| 10 |  | negsdi |  |-  ( ( n e. No /\ m e. No ) -> ( -us ` ( n +s m ) ) = ( ( -us ` n ) +s ( -us ` m ) ) ) | 
						
							| 11 | 7 9 10 | syl2anc |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` ( n +s m ) ) = ( ( -us ` n ) +s ( -us ` m ) ) ) | 
						
							| 12 | 7 | negscld |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` n ) e. No ) | 
						
							| 13 | 9 | negscld |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` m ) e. No ) | 
						
							| 14 |  | simpll |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  A e. No ) | 
						
							| 15 |  | simplr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  B e. No ) | 
						
							| 16 |  | simprll |  |-  ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` n )  | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` n )  | 
						
							| 18 |  | simprrl |  |-  ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` m )  | 
						
							| 19 | 18 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` m )  | 
						
							| 20 | 12 13 14 15 17 19 | slt2addd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( ( -us ` n ) +s ( -us ` m ) )  | 
						
							| 21 | 11 20 | eqbrtrd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( -us ` ( n +s m ) )  | 
						
							| 22 |  | simprlr |  |-  ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  A  | 
						
							| 23 | 22 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  A  | 
						
							| 24 |  | simprrr |  |-  ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  B  | 
						
							| 25 | 24 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  B  | 
						
							| 26 | 14 15 7 9 23 25 | slt2addd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  ( A +s B )  | 
						
							| 27 |  | fveq2 |  |-  ( p = ( n +s m ) -> ( -us ` p ) = ( -us ` ( n +s m ) ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( p = ( n +s m ) -> ( ( -us ` p )  ( -us ` ( n +s m ) )  | 
						
							| 29 |  | breq2 |  |-  ( p = ( n +s m ) -> ( ( A +s B )  ( A +s B )  | 
						
							| 30 | 28 29 | anbi12d |  |-  ( p = ( n +s m ) -> ( ( ( -us ` p )  ( ( -us ` ( n +s m ) )  | 
						
							| 31 | 30 | rspcev |  |-  ( ( ( n +s m ) e. NN_s /\ ( ( -us ` ( n +s m ) )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 32 | 5 21 26 31 | syl12anc |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 33 | 32 | expr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 34 | 33 | rexlimdvva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 35 |  | simpl |  |-  ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 36 |  | simpl |  |-  ( ( E. m e. NN_s ( ( -us ` m )  E. m e. NN_s ( ( -us ` m )  | 
						
							| 37 | 35 36 | anim12i |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 38 |  | reeanv |  |-  ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 39 | 37 38 | sylibr |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  | 
						
							| 40 | 34 39 | impel |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 41 |  | simpr |  |-  ( ( E. n e. NN_s ( ( -us ` n )  A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 42 |  | simpr |  |-  ( ( E. m e. NN_s ( ( -us ` m )  B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) | 
						
							| 43 | 41 42 | anim12i |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) | 
						
							| 44 |  | simpll |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A e. No ) | 
						
							| 45 |  | recut |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 46 | 44 45 | syl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 47 |  | simplr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B e. No ) | 
						
							| 48 |  | recut |  |-  ( B e. No -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < | 
						
							| 50 |  | simprl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 51 |  | simprr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) | 
						
							| 52 | 46 49 50 51 | addsunif |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A +s B ) = ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) ) | 
						
							| 53 |  | ovex |  |-  ( A -s ( 1s /su n ) ) e. _V | 
						
							| 54 |  | oveq1 |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( t +s B ) = ( ( A -s ( 1s /su n ) ) +s B ) ) | 
						
							| 55 | 54 | eqeq2d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( z = ( t +s B ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) ) | 
						
							| 56 | 53 55 | ceqsexv |  |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) | 
						
							| 57 |  | simpll |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> A e. No ) | 
						
							| 58 |  | simplr |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> B e. No ) | 
						
							| 59 |  | 1sno |  |-  1s e. No | 
						
							| 60 | 59 | a1i |  |-  ( n e. NN_s -> 1s e. No ) | 
						
							| 61 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 62 |  | nnne0s |  |-  ( n e. NN_s -> n =/= 0s ) | 
						
							| 63 | 60 61 62 | divscld |  |-  ( n e. NN_s -> ( 1s /su n ) e. No ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( 1s /su n ) e. No ) | 
						
							| 65 | 57 58 64 | addsubsd |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( ( A +s B ) -s ( 1s /su n ) ) = ( ( A -s ( 1s /su n ) ) +s B ) ) | 
						
							| 66 | 65 | eqeq2d |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( z = ( ( A +s B ) -s ( 1s /su n ) ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) ) | 
						
							| 67 | 56 66 | bitr4id |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) | 
						
							| 68 | 67 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. n e. NN_s z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) | 
						
							| 69 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 70 | 69 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 71 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 72 |  | eqeq1 |  |-  ( x = t -> ( x = ( A -s ( 1s /su n ) ) <-> t = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 73 | 72 | rexbidv |  |-  ( x = t -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 74 | 73 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 75 | 70 71 74 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 76 |  | oveq2 |  |-  ( p = n -> ( 1s /su p ) = ( 1s /su n ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( p = n -> ( ( A +s B ) -s ( 1s /su p ) ) = ( ( A +s B ) -s ( 1s /su n ) ) ) | 
						
							| 78 | 77 | eqeq2d |  |-  ( p = n -> ( z = ( ( A +s B ) -s ( 1s /su p ) ) <-> z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) | 
						
							| 79 | 78 | cbvrexvw |  |-  ( E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) <-> E. n e. NN_s z = ( ( A +s B ) -s ( 1s /su n ) ) ) | 
						
							| 80 | 68 75 79 | 3bitr4g |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 81 | 80 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) | 
						
							| 82 |  | ovex |  |-  ( B -s ( 1s /su m ) ) e. _V | 
						
							| 83 |  | oveq2 |  |-  ( t = ( B -s ( 1s /su m ) ) -> ( A +s t ) = ( A +s ( B -s ( 1s /su m ) ) ) ) | 
						
							| 84 | 83 | eqeq2d |  |-  ( t = ( B -s ( 1s /su m ) ) -> ( z = ( A +s t ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) ) | 
						
							| 85 | 82 84 | ceqsexv |  |-  ( E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) | 
						
							| 86 |  | simpll |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> A e. No ) | 
						
							| 87 |  | simplr |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> B e. No ) | 
						
							| 88 | 59 | a1i |  |-  ( m e. NN_s -> 1s e. No ) | 
						
							| 89 |  | nnsno |  |-  ( m e. NN_s -> m e. No ) | 
						
							| 90 |  | nnne0s |  |-  ( m e. NN_s -> m =/= 0s ) | 
						
							| 91 | 88 89 90 | divscld |  |-  ( m e. NN_s -> ( 1s /su m ) e. No ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( 1s /su m ) e. No ) | 
						
							| 93 | 86 87 92 | addsubsassd |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( ( A +s B ) -s ( 1s /su m ) ) = ( A +s ( B -s ( 1s /su m ) ) ) ) | 
						
							| 94 | 93 | eqeq2d |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( z = ( ( A +s B ) -s ( 1s /su m ) ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) ) | 
						
							| 95 | 85 94 | bitr4id |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) | 
						
							| 96 | 95 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. m e. NN_s z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) | 
						
							| 97 |  | r19.41v |  |-  ( E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 98 | 97 | exbii |  |-  ( E. t E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 99 |  | rexcom4 |  |-  ( E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 100 |  | eqeq1 |  |-  ( y = t -> ( y = ( B -s ( 1s /su m ) ) <-> t = ( B -s ( 1s /su m ) ) ) ) | 
						
							| 101 | 100 | rexbidv |  |-  ( y = t -> ( E. m e. NN_s y = ( B -s ( 1s /su m ) ) <-> E. m e. NN_s t = ( B -s ( 1s /su m ) ) ) ) | 
						
							| 102 | 101 | rexab |  |-  ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. t ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 103 | 98 99 102 | 3bitr4ri |  |-  ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 104 |  | oveq2 |  |-  ( p = m -> ( 1s /su p ) = ( 1s /su m ) ) | 
						
							| 105 | 104 | oveq2d |  |-  ( p = m -> ( ( A +s B ) -s ( 1s /su p ) ) = ( ( A +s B ) -s ( 1s /su m ) ) ) | 
						
							| 106 | 105 | eqeq2d |  |-  ( p = m -> ( z = ( ( A +s B ) -s ( 1s /su p ) ) <-> z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) | 
						
							| 107 | 106 | cbvrexvw |  |-  ( E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) <-> E. m e. NN_s z = ( ( A +s B ) -s ( 1s /su m ) ) ) | 
						
							| 108 | 96 103 107 | 3bitr4g |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 109 | 108 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) | 
						
							| 110 | 81 109 | uneq12d |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) ) | 
						
							| 111 |  | unidm |  |-  ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } | 
						
							| 112 | 110 111 | eqtrdi |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) | 
						
							| 113 |  | ovex |  |-  ( A +s ( 1s /su n ) ) e. _V | 
						
							| 114 |  | oveq1 |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( t +s B ) = ( ( A +s ( 1s /su n ) ) +s B ) ) | 
						
							| 115 | 114 | eqeq2d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( z = ( t +s B ) <-> z = ( ( A +s ( 1s /su n ) ) +s B ) ) ) | 
						
							| 116 | 113 115 | ceqsexv |  |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s ( 1s /su n ) ) +s B ) ) | 
						
							| 117 | 57 64 58 | adds32d |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( ( A +s ( 1s /su n ) ) +s B ) = ( ( A +s B ) +s ( 1s /su n ) ) ) | 
						
							| 118 | 117 | eqeq2d |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( z = ( ( A +s ( 1s /su n ) ) +s B ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) | 
						
							| 119 | 116 118 | bitrid |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) | 
						
							| 120 | 119 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. n e. NN_s z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) | 
						
							| 121 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 122 | 121 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 123 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 124 |  | eqeq1 |  |-  ( x = t -> ( x = ( A +s ( 1s /su n ) ) <-> t = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 125 | 124 | rexbidv |  |-  ( x = t -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 126 | 125 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 127 | 122 123 126 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) | 
						
							| 128 | 76 | oveq2d |  |-  ( p = n -> ( ( A +s B ) +s ( 1s /su p ) ) = ( ( A +s B ) +s ( 1s /su n ) ) ) | 
						
							| 129 | 128 | eqeq2d |  |-  ( p = n -> ( z = ( ( A +s B ) +s ( 1s /su p ) ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) | 
						
							| 130 | 129 | cbvrexvw |  |-  ( E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) <-> E. n e. NN_s z = ( ( A +s B ) +s ( 1s /su n ) ) ) | 
						
							| 131 | 120 127 130 | 3bitr4g |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 132 | 131 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) | 
						
							| 133 |  | ovex |  |-  ( B +s ( 1s /su m ) ) e. _V | 
						
							| 134 |  | oveq2 |  |-  ( t = ( B +s ( 1s /su m ) ) -> ( A +s t ) = ( A +s ( B +s ( 1s /su m ) ) ) ) | 
						
							| 135 | 134 | eqeq2d |  |-  ( t = ( B +s ( 1s /su m ) ) -> ( z = ( A +s t ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) ) | 
						
							| 136 | 133 135 | ceqsexv |  |-  ( E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) | 
						
							| 137 | 86 87 92 | addsassd |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( ( A +s B ) +s ( 1s /su m ) ) = ( A +s ( B +s ( 1s /su m ) ) ) ) | 
						
							| 138 | 137 | eqeq2d |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( z = ( ( A +s B ) +s ( 1s /su m ) ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) ) | 
						
							| 139 | 136 138 | bitr4id |  |-  ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) | 
						
							| 140 | 139 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. m e. NN_s z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) | 
						
							| 141 |  | r19.41v |  |-  ( E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 142 | 141 | exbii |  |-  ( E. t E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 143 |  | rexcom4 |  |-  ( E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 144 |  | eqeq1 |  |-  ( y = t -> ( y = ( B +s ( 1s /su m ) ) <-> t = ( B +s ( 1s /su m ) ) ) ) | 
						
							| 145 | 144 | rexbidv |  |-  ( y = t -> ( E. m e. NN_s y = ( B +s ( 1s /su m ) ) <-> E. m e. NN_s t = ( B +s ( 1s /su m ) ) ) ) | 
						
							| 146 | 145 | rexab |  |-  ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. t ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 147 | 142 143 146 | 3bitr4ri |  |-  ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) | 
						
							| 148 | 104 | oveq2d |  |-  ( p = m -> ( ( A +s B ) +s ( 1s /su p ) ) = ( ( A +s B ) +s ( 1s /su m ) ) ) | 
						
							| 149 | 148 | eqeq2d |  |-  ( p = m -> ( z = ( ( A +s B ) +s ( 1s /su p ) ) <-> z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) | 
						
							| 150 | 149 | cbvrexvw |  |-  ( E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) <-> E. m e. NN_s z = ( ( A +s B ) +s ( 1s /su m ) ) ) | 
						
							| 151 | 140 147 150 | 3bitr4g |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 152 | 151 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) | 
						
							| 153 | 132 152 | uneq12d |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) = ( { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 154 |  | unidm |  |-  ( { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } | 
						
							| 155 | 153 154 | eqtrdi |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) | 
						
							| 156 | 112 155 | oveq12d |  |-  ( ( A e. No /\ B e. No ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 158 | 52 157 | eqtrd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A +s B ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 159 | 43 158 | sylan2 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A +s B ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 160 | 2 40 159 | jca32 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 161 | 160 | an4s |  |-  ( ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 162 |  | elreno |  |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 163 |  | elreno |  |-  ( B e. RR_s <-> ( B e. No /\ ( E. m e. NN_s ( ( -us ` m )  | 
						
							| 164 | 162 163 | anbi12i |  |-  ( ( A e. RR_s /\ B e. RR_s ) <-> ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 165 |  | elreno |  |-  ( ( A +s B ) e. RR_s <-> ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 166 | 161 164 165 | 3imtr4i |  |-  ( ( A e. RR_s /\ B e. RR_s ) -> ( A +s B ) e. RR_s ) |