| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addscl |
|- ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( A +s B ) e. No ) |
| 3 |
|
nnaddscl |
|- ( ( n e. NN_s /\ m e. NN_s ) -> ( n +s m ) e. NN_s ) |
| 4 |
3
|
adantr |
|- ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( n +s m ) e. NN_s ) |
| 5 |
4
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( n +s m ) e. NN_s ) |
| 6 |
|
simprll |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) n e. NN_s ) |
| 7 |
6
|
nnsnod |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) n e. No ) |
| 8 |
|
simprlr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) m e. NN_s ) |
| 9 |
8
|
nnsnod |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) m e. No ) |
| 10 |
|
negsdi |
|- ( ( n e. No /\ m e. No ) -> ( -us ` ( n +s m ) ) = ( ( -us ` n ) +s ( -us ` m ) ) ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` ( n +s m ) ) = ( ( -us ` n ) +s ( -us ` m ) ) ) |
| 12 |
7
|
negscld |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` n ) e. No ) |
| 13 |
9
|
negscld |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` m ) e. No ) |
| 14 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) A e. No ) |
| 15 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) B e. No ) |
| 16 |
|
simprll |
|- ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` n ) |
| 17 |
16
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` n ) |
| 18 |
|
simprrl |
|- ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` m ) |
| 19 |
18
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` m ) |
| 20 |
12 13 14 15 17 19
|
slt2addd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( ( -us ` n ) +s ( -us ` m ) ) |
| 21 |
11 20
|
eqbrtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( -us ` ( n +s m ) ) |
| 22 |
|
simprlr |
|- ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) A |
| 23 |
22
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) A |
| 24 |
|
simprrr |
|- ( ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) B |
| 25 |
24
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) B |
| 26 |
14 15 7 9 23 25
|
slt2addd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) ( A +s B ) |
| 27 |
|
fveq2 |
|- ( p = ( n +s m ) -> ( -us ` p ) = ( -us ` ( n +s m ) ) ) |
| 28 |
27
|
breq1d |
|- ( p = ( n +s m ) -> ( ( -us ` p ) ( -us ` ( n +s m ) ) |
| 29 |
|
breq2 |
|- ( p = ( n +s m ) -> ( ( A +s B ) ( A +s B ) |
| 30 |
28 29
|
anbi12d |
|- ( p = ( n +s m ) -> ( ( ( -us ` p ) ( ( -us ` ( n +s m ) ) |
| 31 |
30
|
rspcev |
|- ( ( ( n +s m ) e. NN_s /\ ( ( -us ` ( n +s m ) ) E. p e. NN_s ( ( -us ` p ) |
| 32 |
5 21 26 31
|
syl12anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 33 |
32
|
expr |
|- ( ( ( A e. No /\ B e. No ) /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 34 |
33
|
rexlimdvva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 35 |
|
simpl |
|- ( ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
| 36 |
|
simpl |
|- ( ( E. m e. NN_s ( ( -us ` m ) E. m e. NN_s ( ( -us ` m ) |
| 37 |
35 36
|
anim12i |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) ( E. n e. NN_s ( ( -us ` n ) |
| 38 |
|
reeanv |
|- ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) ( E. n e. NN_s ( ( -us ` n ) |
| 39 |
37 38
|
sylibr |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) |
| 40 |
34 39
|
impel |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 41 |
|
simpr |
|- ( ( E. n e. NN_s ( ( -us ` n ) A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
| 42 |
|
simpr |
|- ( ( E. m e. NN_s ( ( -us ` m ) B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) |
| 43 |
41 42
|
anim12i |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) |
| 44 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A e. No ) |
| 45 |
|
recut |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 46 |
44 45
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 47 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B e. No ) |
| 48 |
|
recut |
|- ( B e. No -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < |
| 49 |
47 48
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < |
| 50 |
|
simprl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
| 51 |
|
simprr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) |
| 52 |
46 49 50 51
|
addsunif |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A +s B ) = ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) ) |
| 53 |
|
ovex |
|- ( A -s ( 1s /su n ) ) e. _V |
| 54 |
|
oveq1 |
|- ( t = ( A -s ( 1s /su n ) ) -> ( t +s B ) = ( ( A -s ( 1s /su n ) ) +s B ) ) |
| 55 |
54
|
eqeq2d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( z = ( t +s B ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) ) |
| 56 |
53 55
|
ceqsexv |
|- ( E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) |
| 57 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> A e. No ) |
| 58 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> B e. No ) |
| 59 |
|
1sno |
|- 1s e. No |
| 60 |
59
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
| 61 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
| 62 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
| 63 |
60 61 62
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
| 64 |
63
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( 1s /su n ) e. No ) |
| 65 |
57 58 64
|
addsubsd |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( ( A +s B ) -s ( 1s /su n ) ) = ( ( A -s ( 1s /su n ) ) +s B ) ) |
| 66 |
65
|
eqeq2d |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( z = ( ( A +s B ) -s ( 1s /su n ) ) <-> z = ( ( A -s ( 1s /su n ) ) +s B ) ) ) |
| 67 |
56 66
|
bitr4id |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) |
| 68 |
67
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. n e. NN_s z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) |
| 69 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 70 |
69
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 71 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 72 |
|
eqeq1 |
|- ( x = t -> ( x = ( A -s ( 1s /su n ) ) <-> t = ( A -s ( 1s /su n ) ) ) ) |
| 73 |
72
|
rexbidv |
|- ( x = t -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A -s ( 1s /su n ) ) ) ) |
| 74 |
73
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 75 |
70 71 74
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 76 |
|
oveq2 |
|- ( p = n -> ( 1s /su p ) = ( 1s /su n ) ) |
| 77 |
76
|
oveq2d |
|- ( p = n -> ( ( A +s B ) -s ( 1s /su p ) ) = ( ( A +s B ) -s ( 1s /su n ) ) ) |
| 78 |
77
|
eqeq2d |
|- ( p = n -> ( z = ( ( A +s B ) -s ( 1s /su p ) ) <-> z = ( ( A +s B ) -s ( 1s /su n ) ) ) ) |
| 79 |
78
|
cbvrexvw |
|- ( E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) <-> E. n e. NN_s z = ( ( A +s B ) -s ( 1s /su n ) ) ) |
| 80 |
68 75 79
|
3bitr4g |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) <-> E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) ) ) |
| 81 |
80
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) |
| 82 |
|
ovex |
|- ( B -s ( 1s /su m ) ) e. _V |
| 83 |
|
oveq2 |
|- ( t = ( B -s ( 1s /su m ) ) -> ( A +s t ) = ( A +s ( B -s ( 1s /su m ) ) ) ) |
| 84 |
83
|
eqeq2d |
|- ( t = ( B -s ( 1s /su m ) ) -> ( z = ( A +s t ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) ) |
| 85 |
82 84
|
ceqsexv |
|- ( E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) |
| 86 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> A e. No ) |
| 87 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> B e. No ) |
| 88 |
59
|
a1i |
|- ( m e. NN_s -> 1s e. No ) |
| 89 |
|
nnsno |
|- ( m e. NN_s -> m e. No ) |
| 90 |
|
nnne0s |
|- ( m e. NN_s -> m =/= 0s ) |
| 91 |
88 89 90
|
divscld |
|- ( m e. NN_s -> ( 1s /su m ) e. No ) |
| 92 |
91
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( 1s /su m ) e. No ) |
| 93 |
86 87 92
|
addsubsassd |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( ( A +s B ) -s ( 1s /su m ) ) = ( A +s ( B -s ( 1s /su m ) ) ) ) |
| 94 |
93
|
eqeq2d |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( z = ( ( A +s B ) -s ( 1s /su m ) ) <-> z = ( A +s ( B -s ( 1s /su m ) ) ) ) ) |
| 95 |
85 94
|
bitr4id |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) |
| 96 |
95
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. m e. NN_s z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) |
| 97 |
|
r19.41v |
|- ( E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 98 |
97
|
exbii |
|- ( E. t E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 99 |
|
rexcom4 |
|- ( E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t E. m e. NN_s ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 100 |
|
eqeq1 |
|- ( y = t -> ( y = ( B -s ( 1s /su m ) ) <-> t = ( B -s ( 1s /su m ) ) ) ) |
| 101 |
100
|
rexbidv |
|- ( y = t -> ( E. m e. NN_s y = ( B -s ( 1s /su m ) ) <-> E. m e. NN_s t = ( B -s ( 1s /su m ) ) ) ) |
| 102 |
101
|
rexab |
|- ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. t ( E. m e. NN_s t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 103 |
98 99 102
|
3bitr4ri |
|- ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. m e. NN_s E. t ( t = ( B -s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 104 |
|
oveq2 |
|- ( p = m -> ( 1s /su p ) = ( 1s /su m ) ) |
| 105 |
104
|
oveq2d |
|- ( p = m -> ( ( A +s B ) -s ( 1s /su p ) ) = ( ( A +s B ) -s ( 1s /su m ) ) ) |
| 106 |
105
|
eqeq2d |
|- ( p = m -> ( z = ( ( A +s B ) -s ( 1s /su p ) ) <-> z = ( ( A +s B ) -s ( 1s /su m ) ) ) ) |
| 107 |
106
|
cbvrexvw |
|- ( E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) <-> E. m e. NN_s z = ( ( A +s B ) -s ( 1s /su m ) ) ) |
| 108 |
96 103 107
|
3bitr4g |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) <-> E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) ) ) |
| 109 |
108
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) |
| 110 |
81 109
|
uneq12d |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) ) |
| 111 |
|
unidm |
|- ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |
| 112 |
110 111
|
eqtrdi |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } ) |
| 113 |
|
ovex |
|- ( A +s ( 1s /su n ) ) e. _V |
| 114 |
|
oveq1 |
|- ( t = ( A +s ( 1s /su n ) ) -> ( t +s B ) = ( ( A +s ( 1s /su n ) ) +s B ) ) |
| 115 |
114
|
eqeq2d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( z = ( t +s B ) <-> z = ( ( A +s ( 1s /su n ) ) +s B ) ) ) |
| 116 |
113 115
|
ceqsexv |
|- ( E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s ( 1s /su n ) ) +s B ) ) |
| 117 |
57 64 58
|
adds32d |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( ( A +s ( 1s /su n ) ) +s B ) = ( ( A +s B ) +s ( 1s /su n ) ) ) |
| 118 |
117
|
eqeq2d |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( z = ( ( A +s ( 1s /su n ) ) +s B ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) |
| 119 |
116 118
|
bitrid |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) |
| 120 |
119
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. n e. NN_s z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) |
| 121 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 122 |
121
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 123 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 124 |
|
eqeq1 |
|- ( x = t -> ( x = ( A +s ( 1s /su n ) ) <-> t = ( A +s ( 1s /su n ) ) ) ) |
| 125 |
124
|
rexbidv |
|- ( x = t -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A +s ( 1s /su n ) ) ) ) |
| 126 |
125
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 127 |
122 123 126
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ z = ( t +s B ) ) ) |
| 128 |
76
|
oveq2d |
|- ( p = n -> ( ( A +s B ) +s ( 1s /su p ) ) = ( ( A +s B ) +s ( 1s /su n ) ) ) |
| 129 |
128
|
eqeq2d |
|- ( p = n -> ( z = ( ( A +s B ) +s ( 1s /su p ) ) <-> z = ( ( A +s B ) +s ( 1s /su n ) ) ) ) |
| 130 |
129
|
cbvrexvw |
|- ( E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) <-> E. n e. NN_s z = ( ( A +s B ) +s ( 1s /su n ) ) ) |
| 131 |
120 127 130
|
3bitr4g |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) <-> E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) ) ) |
| 132 |
131
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) |
| 133 |
|
ovex |
|- ( B +s ( 1s /su m ) ) e. _V |
| 134 |
|
oveq2 |
|- ( t = ( B +s ( 1s /su m ) ) -> ( A +s t ) = ( A +s ( B +s ( 1s /su m ) ) ) ) |
| 135 |
134
|
eqeq2d |
|- ( t = ( B +s ( 1s /su m ) ) -> ( z = ( A +s t ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) ) |
| 136 |
133 135
|
ceqsexv |
|- ( E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) |
| 137 |
86 87 92
|
addsassd |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( ( A +s B ) +s ( 1s /su m ) ) = ( A +s ( B +s ( 1s /su m ) ) ) ) |
| 138 |
137
|
eqeq2d |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( z = ( ( A +s B ) +s ( 1s /su m ) ) <-> z = ( A +s ( B +s ( 1s /su m ) ) ) ) ) |
| 139 |
136 138
|
bitr4id |
|- ( ( ( A e. No /\ B e. No ) /\ m e. NN_s ) -> ( E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) |
| 140 |
139
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. m e. NN_s z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) |
| 141 |
|
r19.41v |
|- ( E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 142 |
141
|
exbii |
|- ( E. t E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 143 |
|
rexcom4 |
|- ( E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) <-> E. t E. m e. NN_s ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 144 |
|
eqeq1 |
|- ( y = t -> ( y = ( B +s ( 1s /su m ) ) <-> t = ( B +s ( 1s /su m ) ) ) ) |
| 145 |
144
|
rexbidv |
|- ( y = t -> ( E. m e. NN_s y = ( B +s ( 1s /su m ) ) <-> E. m e. NN_s t = ( B +s ( 1s /su m ) ) ) ) |
| 146 |
145
|
rexab |
|- ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. t ( E. m e. NN_s t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 147 |
142 143 146
|
3bitr4ri |
|- ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. m e. NN_s E. t ( t = ( B +s ( 1s /su m ) ) /\ z = ( A +s t ) ) ) |
| 148 |
104
|
oveq2d |
|- ( p = m -> ( ( A +s B ) +s ( 1s /su p ) ) = ( ( A +s B ) +s ( 1s /su m ) ) ) |
| 149 |
148
|
eqeq2d |
|- ( p = m -> ( z = ( ( A +s B ) +s ( 1s /su p ) ) <-> z = ( ( A +s B ) +s ( 1s /su m ) ) ) ) |
| 150 |
149
|
cbvrexvw |
|- ( E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) <-> E. m e. NN_s z = ( ( A +s B ) +s ( 1s /su m ) ) ) |
| 151 |
140 147 150
|
3bitr4g |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) <-> E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) ) ) |
| 152 |
151
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) |
| 153 |
132 152
|
uneq12d |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) = ( { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) |
| 154 |
|
unidm |
|- ( { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } |
| 155 |
153 154
|
eqtrdi |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) = { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) |
| 156 |
112 155
|
oveq12d |
|- ( ( A e. No /\ B e. No ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) |
| 157 |
156
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( A +s t ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } z = ( t +s B ) } u. { z | E. t e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( A +s t ) } ) ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) |
| 158 |
52 157
|
eqtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A +s B ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) |
| 159 |
43 158
|
sylan2 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( A +s B ) = ( { z | E. p e. NN_s z = ( ( A +s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A +s B ) +s ( 1s /su p ) ) } ) ) |
| 160 |
2 40 159
|
jca32 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 161 |
160
|
an4s |
|- ( ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 162 |
|
elreno |
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 163 |
|
elreno |
|- ( B e. RR_s <-> ( B e. No /\ ( E. m e. NN_s ( ( -us ` m ) |
| 164 |
162 163
|
anbi12i |
|- ( ( A e. RR_s /\ B e. RR_s ) <-> ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 165 |
|
elreno |
|- ( ( A +s B ) e. RR_s <-> ( ( A +s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 166 |
161 164 165
|
3imtr4i |
|- ( ( A e. RR_s /\ B e. RR_s ) -> ( A +s B ) e. RR_s ) |