Step |
Hyp |
Ref |
Expression |
1 |
|
addscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) ∈ No ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( 𝐴 +s 𝐵 ) ∈ No ) |
3 |
|
nnaddscl |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑛 +s 𝑚 ) ∈ ℕs ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) → ( 𝑛 +s 𝑚 ) ∈ ℕs ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( 𝑛 +s 𝑚 ) ∈ ℕs ) |
6 |
|
simprll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝑛 ∈ ℕs ) |
7 |
6
|
nnsnod |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝑛 ∈ No ) |
8 |
|
simprlr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝑚 ∈ ℕs ) |
9 |
8
|
nnsnod |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝑚 ∈ No ) |
10 |
|
negsdi |
⊢ ( ( 𝑛 ∈ No ∧ 𝑚 ∈ No ) → ( -us ‘ ( 𝑛 +s 𝑚 ) ) = ( ( -us ‘ 𝑛 ) +s ( -us ‘ 𝑚 ) ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ ( 𝑛 +s 𝑚 ) ) = ( ( -us ‘ 𝑛 ) +s ( -us ‘ 𝑚 ) ) ) |
12 |
7
|
negscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ 𝑛 ) ∈ No ) |
13 |
9
|
negscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ 𝑚 ) ∈ No ) |
14 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝐴 ∈ No ) |
15 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝐵 ∈ No ) |
16 |
|
simprll |
⊢ ( ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) → ( -us ‘ 𝑛 ) <s 𝐴 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ 𝑛 ) <s 𝐴 ) |
18 |
|
simprrl |
⊢ ( ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) → ( -us ‘ 𝑚 ) <s 𝐵 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ 𝑚 ) <s 𝐵 ) |
20 |
12 13 14 15 17 19
|
slt2addd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( ( -us ‘ 𝑛 ) +s ( -us ‘ 𝑚 ) ) <s ( 𝐴 +s 𝐵 ) ) |
21 |
11 20
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( -us ‘ ( 𝑛 +s 𝑚 ) ) <s ( 𝐴 +s 𝐵 ) ) |
22 |
|
simprlr |
⊢ ( ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) → 𝐴 <s 𝑛 ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝐴 <s 𝑛 ) |
24 |
|
simprrr |
⊢ ( ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) → 𝐵 <s 𝑚 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → 𝐵 <s 𝑚 ) |
26 |
14 15 7 9 23 25
|
slt2addd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ( 𝐴 +s 𝐵 ) <s ( 𝑛 +s 𝑚 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( -us ‘ 𝑝 ) = ( -us ‘ ( 𝑛 +s 𝑚 ) ) ) |
28 |
27
|
breq1d |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ↔ ( -us ‘ ( 𝑛 +s 𝑚 ) ) <s ( 𝐴 +s 𝐵 ) ) ) |
29 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( ( 𝐴 +s 𝐵 ) <s 𝑝 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝑛 +s 𝑚 ) ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑝 = ( 𝑛 +s 𝑚 ) → ( ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ↔ ( ( -us ‘ ( 𝑛 +s 𝑚 ) ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s ( 𝑛 +s 𝑚 ) ) ) ) |
31 |
30
|
rspcev |
⊢ ( ( ( 𝑛 +s 𝑚 ) ∈ ℕs ∧ ( ( -us ‘ ( 𝑛 +s 𝑚 ) ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s ( 𝑛 +s 𝑚 ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ) |
32 |
5 21 26 31
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ) |
33 |
32
|
expr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) ) → ( ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ) ) |
34 |
33
|
rexlimdvva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ) ) |
35 |
|
simpl |
⊢ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) → ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ) |
36 |
|
simpl |
⊢ ( ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) → ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) |
37 |
35 36
|
anim12i |
⊢ ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) |
38 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ↔ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) |
39 |
37 38
|
sylibr |
⊢ ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ) ) |
40 |
34 39
|
impel |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ) |
41 |
|
simpr |
⊢ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) |
42 |
|
simpr |
⊢ ( ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) → 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) |
43 |
41 42
|
anim12i |
⊢ ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) |
44 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐴 ∈ No ) |
45 |
|
recut |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
46 |
44 45
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
47 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐵 ∈ No ) |
48 |
|
recut |
⊢ ( 𝐵 ∈ No → { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } <<s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) |
49 |
47 48
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } <<s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) |
50 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) |
51 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) |
52 |
46 49 50 51
|
addsunif |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) ) ) |
53 |
|
ovex |
⊢ ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ V |
54 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝑡 +s 𝐵 ) = ( ( 𝐴 -s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( 𝑡 +s 𝐵 ) ↔ 𝑧 = ( ( 𝐴 -s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) ) |
56 |
53 55
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ 𝑧 = ( ( 𝐴 -s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) |
57 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → 𝐴 ∈ No ) |
58 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → 𝐵 ∈ No ) |
59 |
|
1sno |
⊢ 1s ∈ No |
60 |
59
|
a1i |
⊢ ( 𝑛 ∈ ℕs → 1s ∈ No ) |
61 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
62 |
|
nnne0s |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ≠ 0s ) |
63 |
60 61 62
|
divscld |
⊢ ( 𝑛 ∈ ℕs → ( 1s /su 𝑛 ) ∈ No ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No ) |
65 |
57 58 64
|
addsubsd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) = ( ( 𝐴 -s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) |
66 |
65
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( ( 𝐴 -s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) ) |
67 |
56 66
|
bitr4id |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ) ) |
68 |
67
|
rexbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ) ) |
69 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
70 |
69
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
71 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑡 ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
72 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
73 |
72
|
rexbidv |
⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
74 |
73
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
75 |
70 71 74
|
3bitr4ri |
⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
76 |
|
oveq2 |
⊢ ( 𝑝 = 𝑛 → ( 1s /su 𝑝 ) = ( 1s /su 𝑛 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑝 = 𝑛 → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ) ) |
79 |
78
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑛 ) ) ) |
80 |
68 75 79
|
3bitr4g |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) ) |
81 |
80
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) |
82 |
|
ovex |
⊢ ( 𝐵 -s ( 1s /su 𝑚 ) ) ∈ V |
83 |
|
oveq2 |
⊢ ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( 𝐴 +s 𝑡 ) = ( 𝐴 +s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) |
84 |
83
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( 𝐴 +s 𝑡 ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) |
85 |
82 84
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) |
86 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → 𝐴 ∈ No ) |
87 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → 𝐵 ∈ No ) |
88 |
59
|
a1i |
⊢ ( 𝑚 ∈ ℕs → 1s ∈ No ) |
89 |
|
nnsno |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ No ) |
90 |
|
nnne0s |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ≠ 0s ) |
91 |
88 89 90
|
divscld |
⊢ ( 𝑚 ∈ ℕs → ( 1s /su 𝑚 ) ∈ No ) |
92 |
91
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( 1s /su 𝑚 ) ∈ No ) |
93 |
86 87 92
|
addsubsassd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) = ( 𝐴 +s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) |
94 |
93
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) |
95 |
85 94
|
bitr4id |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ) ) |
96 |
95
|
rexbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ) ) |
97 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
98 |
97
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
99 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
100 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑡 → ( 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ↔ 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) |
101 |
100
|
rexbidv |
⊢ ( 𝑦 = 𝑡 → ( ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) |
102 |
101
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
103 |
98 99 102
|
3bitr4ri |
⊢ ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
104 |
|
oveq2 |
⊢ ( 𝑝 = 𝑚 → ( 1s /su 𝑝 ) = ( 1s /su 𝑚 ) ) |
105 |
104
|
oveq2d |
⊢ ( 𝑝 = 𝑚 → ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ) |
106 |
105
|
eqeq2d |
⊢ ( 𝑝 = 𝑚 → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ) ) |
107 |
106
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑚 ) ) ) |
108 |
96 103 107
|
3bitr4g |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) ) |
109 |
108
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) |
110 |
81 109
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) ) |
111 |
|
unidm |
⊢ ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |
112 |
110 111
|
eqtrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) |
113 |
|
ovex |
⊢ ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ V |
114 |
|
oveq1 |
⊢ ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑡 +s 𝐵 ) = ( ( 𝐴 +s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) |
115 |
114
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( 𝑡 +s 𝐵 ) ↔ 𝑧 = ( ( 𝐴 +s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) ) |
116 |
113 115
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ 𝑧 = ( ( 𝐴 +s ( 1s /su 𝑛 ) ) +s 𝐵 ) ) |
117 |
57 64 58
|
adds32d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( ( 𝐴 +s ( 1s /su 𝑛 ) ) +s 𝐵 ) = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) |
118 |
117
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 +s ( 1s /su 𝑛 ) ) +s 𝐵 ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) ) |
119 |
116 118
|
bitrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) ) |
120 |
119
|
rexbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) ) |
121 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
122 |
121
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
123 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ↔ ∃ 𝑡 ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
124 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
125 |
124
|
rexbidv |
⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
126 |
125
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
127 |
122 123 126
|
3bitr4ri |
⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ 𝑧 = ( 𝑡 +s 𝐵 ) ) ) |
128 |
76
|
oveq2d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) |
129 |
128
|
eqeq2d |
⊢ ( 𝑝 = 𝑛 → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) ) |
130 |
129
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑛 ) ) ) |
131 |
120 127 130
|
3bitr4g |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) ) |
132 |
131
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) |
133 |
|
ovex |
⊢ ( 𝐵 +s ( 1s /su 𝑚 ) ) ∈ V |
134 |
|
oveq2 |
⊢ ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( 𝐴 +s 𝑡 ) = ( 𝐴 +s ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) |
135 |
134
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( 𝐴 +s 𝑡 ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) ) |
136 |
133 135
|
ceqsexv |
⊢ ( ∃ 𝑡 ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) |
137 |
86 87 92
|
addsassd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) = ( 𝐴 +s ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) |
138 |
137
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) ) |
139 |
136 138
|
bitr4id |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ) ) |
140 |
139
|
rexbidva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ) ) |
141 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
142 |
141
|
exbii |
⊢ ( ∃ 𝑡 ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑡 ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
143 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ↔ ∃ 𝑡 ∃ 𝑚 ∈ ℕs ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
144 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑡 → ( 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ↔ 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) |
145 |
144
|
rexbidv |
⊢ ( 𝑦 = 𝑡 → ( ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ) ) |
146 |
145
|
rexab |
⊢ ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑡 ( ∃ 𝑚 ∈ ℕs 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
147 |
142 143 146
|
3bitr4ri |
⊢ ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑚 ∈ ℕs ∃ 𝑡 ( 𝑡 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( 𝐴 +s 𝑡 ) ) ) |
148 |
104
|
oveq2d |
⊢ ( 𝑝 = 𝑚 → ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ) |
149 |
148
|
eqeq2d |
⊢ ( 𝑝 = 𝑚 → ( 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ↔ 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ) ) |
150 |
149
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑚 ) ) ) |
151 |
140 147 150
|
3bitr4g |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) ) |
152 |
151
|
abbidv |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) |
153 |
132 152
|
uneq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) |
154 |
|
unidm |
⊢ ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } |
155 |
153 154
|
eqtrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) |
156 |
112 155
|
oveq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) |
157 |
156
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } 𝑧 = ( 𝑡 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( 𝐴 +s 𝑡 ) } ) ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) |
158 |
52 157
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 +s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) |
159 |
43 158
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( 𝐴 +s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) |
160 |
2 40 159
|
jca32 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 +s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) ) |
161 |
160
|
an4s |
⊢ ( ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ∧ ( 𝐵 ∈ No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 +s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) ) |
162 |
|
elreno |
⊢ ( 𝐴 ∈ ℝs ↔ ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
163 |
|
elreno |
⊢ ( 𝐵 ∈ ℝs ↔ ( 𝐵 ∈ No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) |
164 |
162 163
|
anbi12i |
⊢ ( ( 𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs ) ↔ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ∧ ( 𝐵 ∈ No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us ‘ 𝑚 ) <s 𝐵 ∧ 𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) ) |
165 |
|
elreno |
⊢ ( ( 𝐴 +s 𝐵 ) ∈ ℝs ↔ ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 +s 𝐵 ) ∧ ( 𝐴 +s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 +s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 +s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) ) |
166 |
161 164 165
|
3imtr4i |
⊢ ( ( 𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs ) → ( 𝐴 +s 𝐵 ) ∈ ℝs ) |