| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) )  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 3 |  | nnaddscl | ⊢ ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  →  ( 𝑛  +s  𝑚 )  ∈  ℕs ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) )  →  ( 𝑛  +s  𝑚 )  ∈  ℕs ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  ( 𝑛  +s  𝑚 )  ∈  ℕs ) | 
						
							| 6 |  | simprll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝑛  ∈  ℕs ) | 
						
							| 7 | 6 | nnsnod | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝑛  ∈   No  ) | 
						
							| 8 |  | simprlr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝑚  ∈  ℕs ) | 
						
							| 9 | 8 | nnsnod | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝑚  ∈   No  ) | 
						
							| 10 |  | negsdi | ⊢ ( ( 𝑛  ∈   No   ∧  𝑚  ∈   No  )  →  (  -us  ‘ ( 𝑛  +s  𝑚 ) )  =  ( (  -us  ‘ 𝑛 )  +s  (  -us  ‘ 𝑚 ) ) ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ ( 𝑛  +s  𝑚 ) )  =  ( (  -us  ‘ 𝑛 )  +s  (  -us  ‘ 𝑚 ) ) ) | 
						
							| 12 | 7 | negscld | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ 𝑛 )  ∈   No  ) | 
						
							| 13 | 9 | negscld | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ 𝑚 )  ∈   No  ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝐴  ∈   No  ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝐵  ∈   No  ) | 
						
							| 16 |  | simprll | ⊢ ( ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) )  →  (  -us  ‘ 𝑛 )  <s  𝐴 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ 𝑛 )  <s  𝐴 ) | 
						
							| 18 |  | simprrl | ⊢ ( ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) )  →  (  -us  ‘ 𝑚 )  <s  𝐵 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ 𝑚 )  <s  𝐵 ) | 
						
							| 20 | 12 13 14 15 17 19 | slt2addd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  ( (  -us  ‘ 𝑛 )  +s  (  -us  ‘ 𝑚 ) )  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 21 | 11 20 | eqbrtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  (  -us  ‘ ( 𝑛  +s  𝑚 ) )  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 22 |  | simprlr | ⊢ ( ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) )  →  𝐴  <s  𝑛 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝐴  <s  𝑛 ) | 
						
							| 24 |  | simprrr | ⊢ ( ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) )  →  𝐵  <s  𝑚 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  𝐵  <s  𝑚 ) | 
						
							| 26 | 14 15 7 9 23 25 | slt2addd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  ( 𝐴  +s  𝐵 )  <s  ( 𝑛  +s  𝑚 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑛  +s  𝑚 )  →  (  -us  ‘ 𝑝 )  =  (  -us  ‘ ( 𝑛  +s  𝑚 ) ) ) | 
						
							| 28 | 27 | breq1d | ⊢ ( 𝑝  =  ( 𝑛  +s  𝑚 )  →  ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ↔  (  -us  ‘ ( 𝑛  +s  𝑚 ) )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑝  =  ( 𝑛  +s  𝑚 )  →  ( ( 𝐴  +s  𝐵 )  <s  𝑝  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝑛  +s  𝑚 ) ) ) | 
						
							| 30 | 28 29 | anbi12d | ⊢ ( 𝑝  =  ( 𝑛  +s  𝑚 )  →  ( ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 )  ↔  ( (  -us  ‘ ( 𝑛  +s  𝑚 ) )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  ( 𝑛  +s  𝑚 ) ) ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( ( 𝑛  +s  𝑚 )  ∈  ℕs  ∧  ( (  -us  ‘ ( 𝑛  +s  𝑚 ) )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  ( 𝑛  +s  𝑚 ) ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 ) ) | 
						
							| 32 | 5 21 26 31 | syl12anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 ) ) | 
						
							| 33 | 32 | expr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑛  ∈  ℕs  ∧  𝑚  ∈  ℕs ) )  →  ( ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 34 | 33 | rexlimdvva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 35 |  | simpl | ⊢ ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  →  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 ) ) | 
						
							| 36 |  | simpl | ⊢ ( ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) )  →  ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) | 
						
							| 37 | 35 36 | anim12i | ⊢ ( ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) | 
						
							| 38 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) )  ↔  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ∃ 𝑛  ∈  ℕs ∃ 𝑚  ∈  ℕs ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 ) ) ) | 
						
							| 40 | 34 39 | impel | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  →  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) )  →  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) | 
						
							| 43 | 41 42 | anim12i | ⊢ ( ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) | 
						
							| 44 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  𝐴  ∈   No  ) | 
						
							| 45 |  | recut | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 47 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  𝐵  ∈   No  ) | 
						
							| 48 |  | recut | ⊢ ( 𝐵  ∈   No   →  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  <<s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  <<s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) | 
						
							| 50 |  | simprl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 51 |  | simprr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) | 
						
							| 52 | 46 49 50 51 | addsunif | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ( 𝐴  +s  𝐵 )  =  ( ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } ) ) ) | 
						
							| 53 |  | ovex | ⊢ ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∈  V | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  ( 𝑡  +s  𝐵 )  =  ( ( 𝐴  -s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  ( 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  𝑧  =  ( ( 𝐴  -s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) ) | 
						
							| 56 | 53 55 | ceqsexv | ⊢ ( ∃ 𝑡 ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  𝑧  =  ( ( 𝐴  -s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) | 
						
							| 57 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  𝐴  ∈   No  ) | 
						
							| 58 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  𝐵  ∈   No  ) | 
						
							| 59 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 60 | 59 | a1i | ⊢ ( 𝑛  ∈  ℕs  →   1s   ∈   No  ) | 
						
							| 61 |  | nnsno | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ∈   No  ) | 
						
							| 62 |  | nnne0s | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ≠   0s  ) | 
						
							| 63 | 60 61 62 | divscld | ⊢ ( 𝑛  ∈  ℕs  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 65 | 57 58 64 | addsubsd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) )  =  ( ( 𝐴  -s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) )  ↔  𝑧  =  ( ( 𝐴  -s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) ) | 
						
							| 67 | 56 66 | bitr4id | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( ∃ 𝑡 ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 68 | 67 | rexbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 69 |  | r19.41v | ⊢ ( ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 70 | 69 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑡 ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 71 |  | rexcom4 | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑡 ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 72 |  | eqeq1 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 73 | 72 | rexbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 74 | 73 | rexab | ⊢ ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑡 ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 75 | 70 71 74 | 3bitr4ri | ⊢ ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 76 |  | oveq2 | ⊢ ( 𝑝  =  𝑛  →  (  1s   /su  𝑝 )  =  (  1s   /su  𝑛 ) ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( 𝑝  =  𝑛  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 79 | 78 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 80 | 68 75 79 | 3bitr4g | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) ) ) | 
						
							| 81 | 80 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 82 |  | ovex | ⊢ ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∈  V | 
						
							| 83 |  | oveq2 | ⊢ ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  →  ( 𝐴  +s  𝑡 )  =  ( 𝐴  +s  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 84 | 83 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  →  ( 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) ) | 
						
							| 85 | 82 84 | ceqsexv | ⊢ ( ∃ 𝑡 ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 86 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  𝐴  ∈   No  ) | 
						
							| 87 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  𝐵  ∈   No  ) | 
						
							| 88 | 59 | a1i | ⊢ ( 𝑚  ∈  ℕs  →   1s   ∈   No  ) | 
						
							| 89 |  | nnsno | ⊢ ( 𝑚  ∈  ℕs  →  𝑚  ∈   No  ) | 
						
							| 90 |  | nnne0s | ⊢ ( 𝑚  ∈  ℕs  →  𝑚  ≠   0s  ) | 
						
							| 91 | 88 89 90 | divscld | ⊢ ( 𝑚  ∈  ℕs  →  (  1s   /su  𝑚 )  ∈   No  ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  (  1s   /su  𝑚 )  ∈   No  ) | 
						
							| 93 | 86 87 92 | addsubsassd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) )  =  ( 𝐴  +s  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 94 | 93 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) ) | 
						
							| 95 | 85 94 | bitr4id | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( ∃ 𝑡 ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 96 | 95 | rexbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 97 |  | r19.41v | ⊢ ( ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 98 | 97 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑡 ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 99 |  | rexcom4 | ⊢ ( ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑡 ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 100 |  | eqeq1 | ⊢ ( 𝑦  =  𝑡  →  ( 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ↔  𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 101 | 100 | rexbidv | ⊢ ( 𝑦  =  𝑡  →  ( ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 102 | 101 | rexab | ⊢ ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑡 ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 103 | 98 99 102 | 3bitr4ri | ⊢ ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  -s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 104 |  | oveq2 | ⊢ ( 𝑝  =  𝑚  →  (  1s   /su  𝑝 )  =  (  1s   /su  𝑚 ) ) | 
						
							| 105 | 104 | oveq2d | ⊢ ( 𝑝  =  𝑚  →  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) ) ) | 
						
							| 106 | 105 | eqeq2d | ⊢ ( 𝑝  =  𝑚  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 107 | 106 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑚 ) ) ) | 
						
							| 108 | 96 103 107 | 3bitr4g | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) ) ) | 
						
							| 109 | 108 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) }  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 110 | 81 109 | uneq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 111 |  | unidm | ⊢ ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } )  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } | 
						
							| 112 | 110 111 | eqtrdi | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 113 |  | ovex | ⊢ ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∈  V | 
						
							| 114 |  | oveq1 | ⊢ ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  ( 𝑡  +s  𝐵 )  =  ( ( 𝐴  +s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) | 
						
							| 115 | 114 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  ( 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  𝑧  =  ( ( 𝐴  +s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) ) | 
						
							| 116 | 113 115 | ceqsexv | ⊢ ( ∃ 𝑡 ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  𝑧  =  ( ( 𝐴  +s  (  1s   /su  𝑛 ) )  +s  𝐵 ) ) | 
						
							| 117 | 57 64 58 | adds32d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( ( 𝐴  +s  (  1s   /su  𝑛 ) )  +s  𝐵 )  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 118 | 117 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( 𝑧  =  ( ( 𝐴  +s  (  1s   /su  𝑛 ) )  +s  𝐵 )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 119 | 116 118 | bitrid | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑛  ∈  ℕs )  →  ( ∃ 𝑡 ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 120 | 119 | rexbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 121 |  | r19.41v | ⊢ ( ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 122 | 121 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑡 ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 123 |  | rexcom4 | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) )  ↔  ∃ 𝑡 ∃ 𝑛  ∈  ℕs ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 124 |  | eqeq1 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 125 | 124 | rexbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 126 | 125 | rexab | ⊢ ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑡 ( ∃ 𝑛  ∈  ℕs 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 127 | 122 123 126 | 3bitr4ri | ⊢ ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑛  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  𝑧  =  ( 𝑡  +s  𝐵 ) ) ) | 
						
							| 128 | 76 | oveq2d | ⊢ ( 𝑝  =  𝑛  →  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 129 | 128 | eqeq2d | ⊢ ( 𝑝  =  𝑛  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 130 | 129 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 131 | 120 127 130 | 3bitr4g | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 )  ↔  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) ) ) | 
						
							| 132 | 131 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 133 |  | ovex | ⊢ ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∈  V | 
						
							| 134 |  | oveq2 | ⊢ ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  →  ( 𝐴  +s  𝑡 )  =  ( 𝐴  +s  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 135 | 134 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  →  ( 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) ) | 
						
							| 136 | 133 135 | ceqsexv | ⊢ ( ∃ 𝑡 ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 137 | 86 87 92 | addsassd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) )  =  ( 𝐴  +s  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 138 | 137 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) )  ↔  𝑧  =  ( 𝐴  +s  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) ) | 
						
							| 139 | 136 138 | bitr4id | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑚  ∈  ℕs )  →  ( ∃ 𝑡 ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 140 | 139 | rexbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 141 |  | r19.41v | ⊢ ( ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 142 | 141 | exbii | ⊢ ( ∃ 𝑡 ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑡 ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 143 |  | rexcom4 | ⊢ ( ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) )  ↔  ∃ 𝑡 ∃ 𝑚  ∈  ℕs ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 144 |  | eqeq1 | ⊢ ( 𝑦  =  𝑡  →  ( 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ↔  𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 145 | 144 | rexbidv | ⊢ ( 𝑦  =  𝑡  →  ( ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 146 | 145 | rexab | ⊢ ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑡 ( ∃ 𝑚  ∈  ℕs 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 147 | 142 143 146 | 3bitr4ri | ⊢ ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑚  ∈  ℕs ∃ 𝑡 ( 𝑡  =  ( 𝐵  +s  (  1s   /su  𝑚 ) )  ∧  𝑧  =  ( 𝐴  +s  𝑡 ) ) ) | 
						
							| 148 | 104 | oveq2d | ⊢ ( 𝑝  =  𝑚  →  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 149 | 148 | eqeq2d | ⊢ ( 𝑝  =  𝑚  →  ( 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  ↔  𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) ) ) ) | 
						
							| 150 | 149 | cbvrexvw | ⊢ ( ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) )  ↔  ∃ 𝑚  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑚 ) ) ) | 
						
							| 151 | 140 147 150 | 3bitr4g | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 )  ↔  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) ) ) | 
						
							| 152 | 151 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) }  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 153 | 132 152 | uneq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 154 |  | unidm | ⊢ ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } )  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } | 
						
							| 155 | 153 154 | eqtrdi | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  =  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) | 
						
							| 156 | 112 155 | oveq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } ) )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ( ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } 𝑧  =  ( 𝑡  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑡  ∈  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } 𝑧  =  ( 𝐴  +s  𝑡 ) } ) )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 158 | 52 157 | eqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) )  →  ( 𝐴  +s  𝐵 )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 159 | 43 158 | sylan2 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) )  →  ( 𝐴  +s  𝐵 )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) | 
						
							| 160 | 2 40 159 | jca32 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) )  ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) )  →  ( ( 𝐴  +s  𝐵 )  ∈   No   ∧  ( ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 )  ∧  ( 𝐴  +s  𝐵 )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) ) ) | 
						
							| 161 | 160 | an4s | ⊢ ( ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  ∧  ( 𝐵  ∈   No   ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) )  →  ( ( 𝐴  +s  𝐵 )  ∈   No   ∧  ( ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 )  ∧  ( 𝐴  +s  𝐵 )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) ) ) | 
						
							| 162 |  | elreno | ⊢ ( 𝐴  ∈  ℝs  ↔  ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) | 
						
							| 163 |  | elreno | ⊢ ( 𝐵  ∈  ℝs  ↔  ( 𝐵  ∈   No   ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) ) | 
						
							| 164 | 162 163 | anbi12i | ⊢ ( ( 𝐴  ∈  ℝs  ∧  𝐵  ∈  ℝs )  ↔  ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  ∧  ( 𝐵  ∈   No   ∧  ( ∃ 𝑚  ∈  ℕs ( (  -us  ‘ 𝑚 )  <s  𝐵  ∧  𝐵  <s  𝑚 )  ∧  𝐵  =  ( { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  -s  (  1s   /su  𝑚 ) ) }  |s  { 𝑦  ∣  ∃ 𝑚  ∈  ℕs 𝑦  =  ( 𝐵  +s  (  1s   /su  𝑚 ) ) } ) ) ) ) ) | 
						
							| 165 |  | elreno | ⊢ ( ( 𝐴  +s  𝐵 )  ∈  ℝs  ↔  ( ( 𝐴  +s  𝐵 )  ∈   No   ∧  ( ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  +s  𝐵 )  ∧  ( 𝐴  +s  𝐵 )  <s  𝑝 )  ∧  ( 𝐴  +s  𝐵 )  =  ( { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  -s  (  1s   /su  𝑝 ) ) }  |s  { 𝑧  ∣  ∃ 𝑝  ∈  ℕs 𝑧  =  ( ( 𝐴  +s  𝐵 )  +s  (  1s   /su  𝑝 ) ) } ) ) ) ) | 
						
							| 166 | 161 164 165 | 3imtr4i | ⊢ ( ( 𝐴  ∈  ℝs  ∧  𝐵  ∈  ℝs )  →  ( 𝐴  +s  𝐵 )  ∈  ℝs ) |