Metamath Proof Explorer


Theorem elreno

Description: Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion elreno
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) 

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( y = A -> ( ( -us ` n )  ( -us ` n ) 
2 breq1
 |-  ( y = A -> ( y  A 
3 1 2 anbi12d
 |-  ( y = A -> ( ( ( -us ` n )  ( ( -us ` n ) 
4 3 rexbidv
 |-  ( y = A -> ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n ) 
5 id
 |-  ( y = A -> y = A )
6 oveq1
 |-  ( y = A -> ( y -s ( 1s /su n ) ) = ( A -s ( 1s /su n ) ) )
7 6 eqeq2d
 |-  ( y = A -> ( x = ( y -s ( 1s /su n ) ) <-> x = ( A -s ( 1s /su n ) ) ) )
8 7 rexbidv
 |-  ( y = A -> ( E. n e. NN_s x = ( y -s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A -s ( 1s /su n ) ) ) )
9 8 abbidv
 |-  ( y = A -> { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } )
10 oveq1
 |-  ( y = A -> ( y +s ( 1s /su n ) ) = ( A +s ( 1s /su n ) ) )
11 10 eqeq2d
 |-  ( y = A -> ( x = ( y +s ( 1s /su n ) ) <-> x = ( A +s ( 1s /su n ) ) ) )
12 11 rexbidv
 |-  ( y = A -> ( E. n e. NN_s x = ( y +s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A +s ( 1s /su n ) ) ) )
13 12 abbidv
 |-  ( y = A -> { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } )
14 9 13 oveq12d
 |-  ( y = A -> ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) )
15 5 14 eqeq12d
 |-  ( y = A -> ( y = ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) <-> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) )
16 4 15 anbi12d
 |-  ( y = A -> ( ( E. n e. NN_s ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n ) 
17 df-reno
 |-  RR_s = { y e. No | ( E. n e. NN_s ( ( -us ` n ) 
18 16 17 elrab2
 |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )