| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( y = A -> ( ( -us ` n )  ( -us ` n )  | 
						
							| 2 |  | breq1 |  |-  ( y = A -> ( y  A  | 
						
							| 3 | 1 2 | anbi12d |  |-  ( y = A -> ( ( ( -us ` n )  ( ( -us ` n )  | 
						
							| 4 | 3 | rexbidv |  |-  ( y = A -> ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 5 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 6 |  | oveq1 |  |-  ( y = A -> ( y -s ( 1s /su n ) ) = ( A -s ( 1s /su n ) ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( y = A -> ( x = ( y -s ( 1s /su n ) ) <-> x = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 8 | 7 | rexbidv |  |-  ( y = A -> ( E. n e. NN_s x = ( y -s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 9 | 8 | abbidv |  |-  ( y = A -> { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) | 
						
							| 10 |  | oveq1 |  |-  ( y = A -> ( y +s ( 1s /su n ) ) = ( A +s ( 1s /su n ) ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( y = A -> ( x = ( y +s ( 1s /su n ) ) <-> x = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( y = A -> ( E. n e. NN_s x = ( y +s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 13 | 12 | abbidv |  |-  ( y = A -> { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) | 
						
							| 14 | 9 13 | oveq12d |  |-  ( y = A -> ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 15 | 5 14 | eqeq12d |  |-  ( y = A -> ( y = ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) <-> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) ) | 
						
							| 16 | 4 15 | anbi12d |  |-  ( y = A -> ( ( E. n e. NN_s ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 17 |  | df-reno |  |-  RR_s = { y e. No | ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 18 | 16 17 | elrab2 |  |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  |