Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( y = A -> ( ( -us ` n ) ( -us ` n ) |
2 |
|
breq1 |
|- ( y = A -> ( y A |
3 |
1 2
|
anbi12d |
|- ( y = A -> ( ( ( -us ` n ) ( ( -us ` n ) |
4 |
3
|
rexbidv |
|- ( y = A -> ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
5 |
|
id |
|- ( y = A -> y = A ) |
6 |
|
oveq1 |
|- ( y = A -> ( y -s ( 1s /su n ) ) = ( A -s ( 1s /su n ) ) ) |
7 |
6
|
eqeq2d |
|- ( y = A -> ( x = ( y -s ( 1s /su n ) ) <-> x = ( A -s ( 1s /su n ) ) ) ) |
8 |
7
|
rexbidv |
|- ( y = A -> ( E. n e. NN_s x = ( y -s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A -s ( 1s /su n ) ) ) ) |
9 |
8
|
abbidv |
|- ( y = A -> { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } ) |
10 |
|
oveq1 |
|- ( y = A -> ( y +s ( 1s /su n ) ) = ( A +s ( 1s /su n ) ) ) |
11 |
10
|
eqeq2d |
|- ( y = A -> ( x = ( y +s ( 1s /su n ) ) <-> x = ( A +s ( 1s /su n ) ) ) ) |
12 |
11
|
rexbidv |
|- ( y = A -> ( E. n e. NN_s x = ( y +s ( 1s /su n ) ) <-> E. n e. NN_s x = ( A +s ( 1s /su n ) ) ) ) |
13 |
12
|
abbidv |
|- ( y = A -> { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } = { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) |
14 |
9 13
|
oveq12d |
|- ( y = A -> ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
15 |
5 14
|
eqeq12d |
|- ( y = A -> ( y = ( { x | E. n e. NN_s x = ( y -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( y +s ( 1s /su n ) ) } ) <-> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) ) |
16 |
4 15
|
anbi12d |
|- ( y = A -> ( ( E. n e. NN_s ( ( -us ` n ) ( E. n e. NN_s ( ( -us ` n ) |
17 |
|
df-reno |
|- RR_s = { y e. No | ( E. n e. NN_s ( ( -us ` n ) |
18 |
16 17
|
elrab2 |
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |