Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( n = ( p x.s q ) -> ( 1s /su n ) = ( 1s /su ( p x.s q ) ) ) |
2 |
1
|
oveq2d |
|- ( n = ( p x.s q ) -> ( B F ( 1s /su n ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) |
3 |
2
|
eqeq2d |
|- ( n = ( p x.s q ) -> ( ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) ) |
4 |
|
nnmulscl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( p x.s q ) e. NN_s ) |
5 |
|
1sno |
|- 1s e. No |
6 |
5
|
a1i |
|- ( ( p e. NN_s /\ q e. NN_s ) -> 1s e. No ) |
7 |
|
nnsno |
|- ( p e. NN_s -> p e. No ) |
8 |
7
|
adantr |
|- ( ( p e. NN_s /\ q e. NN_s ) -> p e. No ) |
9 |
|
nnsno |
|- ( q e. NN_s -> q e. No ) |
10 |
9
|
adantl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> q e. No ) |
11 |
|
nnne0s |
|- ( p e. NN_s -> p =/= 0s ) |
12 |
11
|
adantr |
|- ( ( p e. NN_s /\ q e. NN_s ) -> p =/= 0s ) |
13 |
|
nnne0s |
|- ( q e. NN_s -> q =/= 0s ) |
14 |
13
|
adantl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> q =/= 0s ) |
15 |
6 8 6 10 12 14
|
divmuldivsd |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s x.s 1s ) /su ( p x.s q ) ) ) |
16 |
|
mulsrid |
|- ( 1s e. No -> ( 1s x.s 1s ) = 1s ) |
17 |
5 16
|
ax-mp |
|- ( 1s x.s 1s ) = 1s |
18 |
17
|
oveq1i |
|- ( ( 1s x.s 1s ) /su ( p x.s q ) ) = ( 1s /su ( p x.s q ) ) |
19 |
15 18
|
eqtrdi |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( 1s /su ( p x.s q ) ) ) |
20 |
19
|
oveq2d |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) |
21 |
3 4 20
|
rspcedvdw |
|- ( ( p e. NN_s /\ q e. NN_s ) -> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) |
22 |
|
eqeq1 |
|- ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( A = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) |
23 |
22
|
rexbidv |
|- ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( E. n e. NN_s A = ( B F ( 1s /su n ) ) <-> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) |
24 |
21 23
|
syl5ibrcom |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) ) |
25 |
24
|
rexlimivv |
|- ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) |
26 |
5
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
27 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
28 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
29 |
26 27 28
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
30 |
29
|
mulsridd |
|- ( n e. NN_s -> ( ( 1s /su n ) x.s 1s ) = ( 1s /su n ) ) |
31 |
30
|
eqcomd |
|- ( n e. NN_s -> ( 1s /su n ) = ( ( 1s /su n ) x.s 1s ) ) |
32 |
31
|
oveq2d |
|- ( n e. NN_s -> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) |
33 |
|
1nns |
|- 1s e. NN_s |
34 |
|
oveq2 |
|- ( p = n -> ( 1s /su p ) = ( 1s /su n ) ) |
35 |
34
|
oveq1d |
|- ( p = n -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s ( 1s /su q ) ) ) |
36 |
35
|
oveq2d |
|- ( p = n -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) |
37 |
36
|
eqeq2d |
|- ( p = n -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) ) |
38 |
|
oveq2 |
|- ( q = 1s -> ( 1s /su q ) = ( 1s /su 1s ) ) |
39 |
|
divs1 |
|- ( 1s e. No -> ( 1s /su 1s ) = 1s ) |
40 |
5 39
|
ax-mp |
|- ( 1s /su 1s ) = 1s |
41 |
38 40
|
eqtrdi |
|- ( q = 1s -> ( 1s /su q ) = 1s ) |
42 |
41
|
oveq2d |
|- ( q = 1s -> ( ( 1s /su n ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s 1s ) ) |
43 |
42
|
oveq2d |
|- ( q = 1s -> ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) |
44 |
43
|
eqeq2d |
|- ( q = 1s -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) ) |
45 |
37 44
|
rspc2ev |
|- ( ( n e. NN_s /\ 1s e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
46 |
33 45
|
mp3an2 |
|- ( ( n e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
47 |
32 46
|
mpdan |
|- ( n e. NN_s -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
48 |
|
eqeq1 |
|- ( A = ( B F ( 1s /su n ) ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
49 |
48
|
2rexbidv |
|- ( A = ( B F ( 1s /su n ) ) -> ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
50 |
47 49
|
syl5ibrcom |
|- ( n e. NN_s -> ( A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
51 |
50
|
rexlimiv |
|- ( E. n e. NN_s A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
52 |
25 51
|
impbii |
|- ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) |