| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( n = ( p x.s q ) -> ( 1s /su n ) = ( 1s /su ( p x.s q ) ) ) |
| 2 |
1
|
oveq2d |
|- ( n = ( p x.s q ) -> ( B F ( 1s /su n ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) |
| 3 |
2
|
eqeq2d |
|- ( n = ( p x.s q ) -> ( ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) ) |
| 4 |
|
nnmulscl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( p x.s q ) e. NN_s ) |
| 5 |
|
1sno |
|- 1s e. No |
| 6 |
5
|
a1i |
|- ( ( p e. NN_s /\ q e. NN_s ) -> 1s e. No ) |
| 7 |
|
nnsno |
|- ( p e. NN_s -> p e. No ) |
| 8 |
7
|
adantr |
|- ( ( p e. NN_s /\ q e. NN_s ) -> p e. No ) |
| 9 |
|
nnsno |
|- ( q e. NN_s -> q e. No ) |
| 10 |
9
|
adantl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> q e. No ) |
| 11 |
|
nnne0s |
|- ( p e. NN_s -> p =/= 0s ) |
| 12 |
11
|
adantr |
|- ( ( p e. NN_s /\ q e. NN_s ) -> p =/= 0s ) |
| 13 |
|
nnne0s |
|- ( q e. NN_s -> q =/= 0s ) |
| 14 |
13
|
adantl |
|- ( ( p e. NN_s /\ q e. NN_s ) -> q =/= 0s ) |
| 15 |
6 8 6 10 12 14
|
divmuldivsd |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s x.s 1s ) /su ( p x.s q ) ) ) |
| 16 |
|
mulsrid |
|- ( 1s e. No -> ( 1s x.s 1s ) = 1s ) |
| 17 |
5 16
|
ax-mp |
|- ( 1s x.s 1s ) = 1s |
| 18 |
17
|
oveq1i |
|- ( ( 1s x.s 1s ) /su ( p x.s q ) ) = ( 1s /su ( p x.s q ) ) |
| 19 |
15 18
|
eqtrdi |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( 1s /su ( p x.s q ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) |
| 21 |
3 4 20
|
rspcedvdw |
|- ( ( p e. NN_s /\ q e. NN_s ) -> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) |
| 22 |
|
eqeq1 |
|- ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( A = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) |
| 23 |
22
|
rexbidv |
|- ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( E. n e. NN_s A = ( B F ( 1s /su n ) ) <-> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) |
| 24 |
21 23
|
syl5ibrcom |
|- ( ( p e. NN_s /\ q e. NN_s ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) ) |
| 25 |
24
|
rexlimivv |
|- ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) |
| 26 |
5
|
a1i |
|- ( n e. NN_s -> 1s e. No ) |
| 27 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
| 28 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
| 29 |
26 27 28
|
divscld |
|- ( n e. NN_s -> ( 1s /su n ) e. No ) |
| 30 |
29
|
mulsridd |
|- ( n e. NN_s -> ( ( 1s /su n ) x.s 1s ) = ( 1s /su n ) ) |
| 31 |
30
|
eqcomd |
|- ( n e. NN_s -> ( 1s /su n ) = ( ( 1s /su n ) x.s 1s ) ) |
| 32 |
31
|
oveq2d |
|- ( n e. NN_s -> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) |
| 33 |
|
1nns |
|- 1s e. NN_s |
| 34 |
|
oveq2 |
|- ( p = n -> ( 1s /su p ) = ( 1s /su n ) ) |
| 35 |
34
|
oveq1d |
|- ( p = n -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s ( 1s /su q ) ) ) |
| 36 |
35
|
oveq2d |
|- ( p = n -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) |
| 37 |
36
|
eqeq2d |
|- ( p = n -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) ) |
| 38 |
|
oveq2 |
|- ( q = 1s -> ( 1s /su q ) = ( 1s /su 1s ) ) |
| 39 |
|
divs1 |
|- ( 1s e. No -> ( 1s /su 1s ) = 1s ) |
| 40 |
5 39
|
ax-mp |
|- ( 1s /su 1s ) = 1s |
| 41 |
38 40
|
eqtrdi |
|- ( q = 1s -> ( 1s /su q ) = 1s ) |
| 42 |
41
|
oveq2d |
|- ( q = 1s -> ( ( 1s /su n ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s 1s ) ) |
| 43 |
42
|
oveq2d |
|- ( q = 1s -> ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) |
| 44 |
43
|
eqeq2d |
|- ( q = 1s -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) ) |
| 45 |
37 44
|
rspc2ev |
|- ( ( n e. NN_s /\ 1s e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
| 46 |
33 45
|
mp3an2 |
|- ( ( n e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
| 47 |
32 46
|
mpdan |
|- ( n e. NN_s -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
| 48 |
|
eqeq1 |
|- ( A = ( B F ( 1s /su n ) ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
| 49 |
48
|
2rexbidv |
|- ( A = ( B F ( 1s /su n ) ) -> ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
| 50 |
47 49
|
syl5ibrcom |
|- ( n e. NN_s -> ( A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) |
| 51 |
50
|
rexlimiv |
|- ( E. n e. NN_s A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) |
| 52 |
25 51
|
impbii |
|- ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) |