| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( n = ( p x.s q ) -> ( 1s /su n ) = ( 1s /su ( p x.s q ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( n = ( p x.s q ) -> ( B F ( 1s /su n ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( n = ( p x.s q ) -> ( ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) ) | 
						
							| 4 |  | nnmulscl |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> ( p x.s q ) e. NN_s ) | 
						
							| 5 |  | 1sno |  |-  1s e. No | 
						
							| 6 | 5 | a1i |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> 1s e. No ) | 
						
							| 7 |  | nnsno |  |-  ( p e. NN_s -> p e. No ) | 
						
							| 8 | 7 | adantr |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> p e. No ) | 
						
							| 9 |  | nnsno |  |-  ( q e. NN_s -> q e. No ) | 
						
							| 10 | 9 | adantl |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> q e. No ) | 
						
							| 11 |  | nnne0s |  |-  ( p e. NN_s -> p =/= 0s ) | 
						
							| 12 | 11 | adantr |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> p =/= 0s ) | 
						
							| 13 |  | nnne0s |  |-  ( q e. NN_s -> q =/= 0s ) | 
						
							| 14 | 13 | adantl |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> q =/= 0s ) | 
						
							| 15 | 6 8 6 10 12 14 | divmuldivsd |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s x.s 1s ) /su ( p x.s q ) ) ) | 
						
							| 16 |  | mulsrid |  |-  ( 1s e. No -> ( 1s x.s 1s ) = 1s ) | 
						
							| 17 | 5 16 | ax-mp |  |-  ( 1s x.s 1s ) = 1s | 
						
							| 18 | 17 | oveq1i |  |-  ( ( 1s x.s 1s ) /su ( p x.s q ) ) = ( 1s /su ( p x.s q ) ) | 
						
							| 19 | 15 18 | eqtrdi |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( 1s /su ( p x.s q ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su ( p x.s q ) ) ) ) | 
						
							| 21 | 3 4 20 | rspcedvdw |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) | 
						
							| 22 |  | eqeq1 |  |-  ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( A = ( B F ( 1s /su n ) ) <-> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) | 
						
							| 23 | 22 | rexbidv |  |-  ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> ( E. n e. NN_s A = ( B F ( 1s /su n ) ) <-> E. n e. NN_s ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( 1s /su n ) ) ) ) | 
						
							| 24 | 21 23 | syl5ibrcom |  |-  ( ( p e. NN_s /\ q e. NN_s ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) ) | 
						
							| 25 | 24 | rexlimivv |  |-  ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) -> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) | 
						
							| 26 | 5 | a1i |  |-  ( n e. NN_s -> 1s e. No ) | 
						
							| 27 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 28 |  | nnne0s |  |-  ( n e. NN_s -> n =/= 0s ) | 
						
							| 29 | 26 27 28 | divscld |  |-  ( n e. NN_s -> ( 1s /su n ) e. No ) | 
						
							| 30 | 29 | mulsridd |  |-  ( n e. NN_s -> ( ( 1s /su n ) x.s 1s ) = ( 1s /su n ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( n e. NN_s -> ( 1s /su n ) = ( ( 1s /su n ) x.s 1s ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( n e. NN_s -> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) | 
						
							| 33 |  | 1nns |  |-  1s e. NN_s | 
						
							| 34 |  | oveq2 |  |-  ( p = n -> ( 1s /su p ) = ( 1s /su n ) ) | 
						
							| 35 | 34 | oveq1d |  |-  ( p = n -> ( ( 1s /su p ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s ( 1s /su q ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( p = n -> ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) | 
						
							| 37 | 36 | eqeq2d |  |-  ( p = n -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) ) ) | 
						
							| 38 |  | oveq2 |  |-  ( q = 1s -> ( 1s /su q ) = ( 1s /su 1s ) ) | 
						
							| 39 |  | divs1 |  |-  ( 1s e. No -> ( 1s /su 1s ) = 1s ) | 
						
							| 40 | 5 39 | ax-mp |  |-  ( 1s /su 1s ) = 1s | 
						
							| 41 | 38 40 | eqtrdi |  |-  ( q = 1s -> ( 1s /su q ) = 1s ) | 
						
							| 42 | 41 | oveq2d |  |-  ( q = 1s -> ( ( 1s /su n ) x.s ( 1s /su q ) ) = ( ( 1s /su n ) x.s 1s ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( q = 1s -> ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( q = 1s -> ( ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) ) | 
						
							| 45 | 37 44 | rspc2ev |  |-  ( ( n e. NN_s /\ 1s e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) | 
						
							| 46 | 33 45 | mp3an2 |  |-  ( ( n e. NN_s /\ ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su n ) x.s 1s ) ) ) -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) | 
						
							| 47 | 32 46 | mpdan |  |-  ( n e. NN_s -> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) | 
						
							| 48 |  | eqeq1 |  |-  ( A = ( B F ( 1s /su n ) ) -> ( A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) | 
						
							| 49 | 48 | 2rexbidv |  |-  ( A = ( B F ( 1s /su n ) ) -> ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. p e. NN_s E. q e. NN_s ( B F ( 1s /su n ) ) = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) | 
						
							| 50 | 47 49 | syl5ibrcom |  |-  ( n e. NN_s -> ( A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) ) | 
						
							| 51 | 50 | rexlimiv |  |-  ( E. n e. NN_s A = ( B F ( 1s /su n ) ) -> E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) ) | 
						
							| 52 | 25 51 | impbii |  |-  ( E. p e. NN_s E. q e. NN_s A = ( B F ( ( 1s /su p ) x.s ( 1s /su q ) ) ) <-> E. n e. NN_s A = ( B F ( 1s /su n ) ) ) |