| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulscl |  |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A x.s B ) e. No ) | 
						
							| 3 |  | remulscllem2 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 4 | 3 | expr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 5 | 4 | rexlimdvva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 6 |  | simpl |  |-  ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n )  | 
						
							| 7 |  | simpl |  |-  ( ( E. m e. NN_s ( ( -us ` m )  E. m e. NN_s ( ( -us ` m )  | 
						
							| 8 | 6 7 | anim12i |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 9 |  | reeanv |  |-  ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  | 
						
							| 11 | 5 10 | impel |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 12 |  | simpr |  |-  ( ( E. n e. NN_s ( ( -us ` n )  A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 13 |  | simpr |  |-  ( ( E. m e. NN_s ( ( -us ` m )  B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) | 
						
							| 14 | 12 13 | anim12i |  |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) | 
						
							| 15 |  | recut |  |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. No /\ B e. No ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 17 | 16 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < | 
						
							| 18 |  | recut |  |-  ( B e. No -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < | 
						
							| 19 | 18 | ad2antlr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < | 
						
							| 20 |  | simprl |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) | 
						
							| 21 |  | simprr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) | 
						
							| 22 | 17 19 20 21 | mulsunif2 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) ) | 
						
							| 23 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) | 
						
							| 24 | 23 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) | 
						
							| 25 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) | 
						
							| 26 |  | eqeq1 |  |-  ( x = t -> ( x = ( A -s ( 1s /su n ) ) <-> t = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 27 | 26 | rexbidv |  |-  ( x = t -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A -s ( 1s /su n ) ) ) ) | 
						
							| 28 | 27 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) | 
						
							| 29 | 24 25 28 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) | 
						
							| 30 |  | ovex |  |-  ( A -s ( 1s /su n ) ) e. _V | 
						
							| 31 |  | oveq2 |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( A -s t ) = ( A -s ( A -s ( 1s /su n ) ) ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) | 
						
							| 34 | 33 | eqeq2d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 36 | 30 35 | ceqsexv |  |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) | 
						
							| 37 |  | r19.41v |  |-  ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 38 | 37 | exbii |  |-  ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 39 |  | rexcom4 |  |-  ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 40 |  | eqeq1 |  |-  ( y = u -> ( y = ( B -s ( 1s /su m ) ) <-> u = ( B -s ( 1s /su m ) ) ) ) | 
						
							| 41 | 40 | rexbidv |  |-  ( y = u -> ( E. m e. NN_s y = ( B -s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B -s ( 1s /su m ) ) ) ) | 
						
							| 42 | 41 | rexab |  |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 43 | 38 39 42 | 3bitr4ri |  |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 44 | 36 43 | bitri |  |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) | 
						
							| 45 |  | ovex |  |-  ( B -s ( 1s /su m ) ) e. _V | 
						
							| 46 |  | oveq2 |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( B -s u ) = ( B -s ( B -s ( 1s /su m ) ) ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) ) | 
						
							| 50 | 45 49 | ceqsexv |  |-  ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) | 
						
							| 51 |  | simplll |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> A e. No ) | 
						
							| 52 |  | 1sno |  |-  1s e. No | 
						
							| 53 | 52 | a1i |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> 1s e. No ) | 
						
							| 54 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 55 | 54 | ad2antlr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n e. No ) | 
						
							| 56 |  | nnne0s |  |-  ( n e. NN_s -> n =/= 0s ) | 
						
							| 57 | 56 | ad2antlr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n =/= 0s ) | 
						
							| 58 | 53 55 57 | divscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su n ) e. No ) | 
						
							| 59 | 51 58 | nncansd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( A -s ( A -s ( 1s /su n ) ) ) = ( 1s /su n ) ) | 
						
							| 60 |  | simpllr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> B e. No ) | 
						
							| 61 |  | nnsno |  |-  ( m e. NN_s -> m e. No ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m e. No ) | 
						
							| 63 |  | nnne0s |  |-  ( m e. NN_s -> m =/= 0s ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m =/= 0s ) | 
						
							| 65 | 53 62 64 | divscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su m ) e. No ) | 
						
							| 66 | 60 65 | nncansd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( B -s ( B -s ( 1s /su m ) ) ) = ( 1s /su m ) ) | 
						
							| 67 | 59 66 | oveq12d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) | 
						
							| 69 | 68 | eqeq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 70 | 50 69 | bitrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 71 | 70 | rexbidva |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 72 | 44 71 | bitrid |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 73 | 72 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 74 |  | remulscllem1 |  |-  ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) | 
						
							| 75 | 73 74 | bitrdi |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 76 | 29 75 | bitrid |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 77 | 76 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) | 
						
							| 78 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 79 | 78 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 80 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 81 |  | eqeq1 |  |-  ( x = t -> ( x = ( A +s ( 1s /su n ) ) <-> t = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 82 | 81 | rexbidv |  |-  ( x = t -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A +s ( 1s /su n ) ) ) ) | 
						
							| 83 | 82 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 84 | 79 80 83 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 85 |  | ovex |  |-  ( A +s ( 1s /su n ) ) e. _V | 
						
							| 86 |  | oveq1 |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( t -s A ) = ( ( A +s ( 1s /su n ) ) -s A ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) | 
						
							| 89 | 88 | eqeq2d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 90 | 89 | rexbidv |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 91 | 85 90 | ceqsexv |  |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) | 
						
							| 92 |  | r19.41v |  |-  ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 93 | 92 | exbii |  |-  ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 94 |  | rexcom4 |  |-  ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 95 |  | eqeq1 |  |-  ( y = u -> ( y = ( B +s ( 1s /su m ) ) <-> u = ( B +s ( 1s /su m ) ) ) ) | 
						
							| 96 | 95 | rexbidv |  |-  ( y = u -> ( E. m e. NN_s y = ( B +s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B +s ( 1s /su m ) ) ) ) | 
						
							| 97 | 96 | rexab |  |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 98 | 93 94 97 | 3bitr4ri |  |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 99 | 91 98 | bitri |  |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) | 
						
							| 100 |  | ovex |  |-  ( B +s ( 1s /su m ) ) e. _V | 
						
							| 101 |  | oveq1 |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( u -s B ) = ( ( B +s ( 1s /su m ) ) -s B ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) | 
						
							| 104 | 103 | eqeq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) ) | 
						
							| 105 | 100 104 | ceqsexv |  |-  ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) | 
						
							| 106 |  | pncan2s |  |-  ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) ) | 
						
							| 107 | 51 58 106 | syl2anc |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) ) | 
						
							| 108 |  | pncan2s |  |-  ( ( B e. No /\ ( 1s /su m ) e. No ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) ) | 
						
							| 109 | 60 65 108 | syl2anc |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) ) | 
						
							| 110 | 107 109 | oveq12d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) | 
						
							| 112 | 111 | eqeq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 113 | 105 112 | bitrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 114 | 113 | rexbidva |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 115 | 99 114 | bitrid |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 116 | 115 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 117 | 116 74 | bitrdi |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 118 | 84 117 | bitrid |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) | 
						
							| 119 | 118 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) | 
						
							| 120 | 77 119 | uneq12d |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) ) | 
						
							| 121 |  | unidm |  |-  ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } | 
						
							| 122 | 120 121 | eqtrdi |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) | 
						
							| 123 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 124 | 123 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 125 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 126 | 27 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 127 | 124 125 126 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 128 | 31 | oveq1d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) | 
						
							| 130 | 129 | eqeq2d |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 131 | 130 | rexbidv |  |-  ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 132 | 30 131 | ceqsexv |  |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) | 
						
							| 133 |  | r19.41v |  |-  ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 134 | 133 | exbii |  |-  ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 135 |  | rexcom4 |  |-  ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 136 | 96 | rexab |  |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 137 | 134 135 136 | 3bitr4ri |  |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 138 | 132 137 | bitri |  |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) | 
						
							| 139 | 101 | oveq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) | 
						
							| 141 | 140 | eqeq2d |  |-  ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) ) | 
						
							| 142 | 100 141 | ceqsexv |  |-  ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) | 
						
							| 143 | 59 109 | oveq12d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) | 
						
							| 145 | 144 | eqeq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 146 | 142 145 | bitrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 147 | 146 | rexbidva |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 148 | 138 147 | bitrid |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 149 | 148 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 150 |  | remulscllem1 |  |-  ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) | 
						
							| 151 | 149 150 | bitrdi |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 152 | 127 151 | bitrid |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 153 | 152 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) | 
						
							| 154 |  | r19.41v |  |-  ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 155 | 154 | exbii |  |-  ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 156 |  | rexcom4 |  |-  ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 157 | 82 | rexab |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 158 | 155 156 157 | 3bitr4ri |  |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 159 | 86 | oveq1d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) | 
						
							| 160 | 159 | oveq2d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) | 
						
							| 161 | 160 | eqeq2d |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 162 | 161 | rexbidv |  |-  ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 163 | 85 162 | ceqsexv |  |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) | 
						
							| 164 |  | r19.41v |  |-  ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 165 | 164 | exbii |  |-  ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 166 |  | rexcom4 |  |-  ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 167 | 41 | rexab |  |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 168 | 165 166 167 | 3bitr4ri |  |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 169 | 163 168 | bitri |  |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) | 
						
							| 170 | 46 | oveq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) | 
						
							| 172 | 171 | eqeq2d |  |-  ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) ) | 
						
							| 173 | 45 172 | ceqsexv |  |-  ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) | 
						
							| 174 | 107 66 | oveq12d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) | 
						
							| 175 | 174 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) | 
						
							| 176 | 175 | eqeq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 177 | 173 176 | bitrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 178 | 177 | rexbidva |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 179 | 169 178 | bitrid |  |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 180 | 179 | rexbidva |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) | 
						
							| 181 | 180 150 | bitrdi |  |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 182 | 158 181 | bitrid |  |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) | 
						
							| 183 | 182 | abbidv |  |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) | 
						
							| 184 | 153 183 | uneq12d |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 185 |  | unidm |  |-  ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } | 
						
							| 186 | 184 185 | eqtrdi |  |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) | 
						
							| 187 | 122 186 | oveq12d |  |-  ( ( A e. No /\ B e. No ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 189 | 22 188 | eqtrd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 190 | 14 189 | sylan2 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) | 
						
							| 191 | 2 11 190 | jca32 |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 192 | 191 | an4s |  |-  ( ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 193 |  | elreno |  |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 194 |  | elreno |  |-  ( B e. RR_s <-> ( B e. No /\ ( E. m e. NN_s ( ( -us ` m )  | 
						
							| 195 | 193 194 | anbi12i |  |-  ( ( A e. RR_s /\ B e. RR_s ) <-> ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  | 
						
							| 196 |  | elreno |  |-  ( ( A x.s B ) e. RR_s <-> ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p )  | 
						
							| 197 | 192 195 196 | 3imtr4i |  |-  ( ( A e. RR_s /\ B e. RR_s ) -> ( A x.s B ) e. RR_s ) |