| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulscl |
|- ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( A x.s B ) e. No ) |
| 3 |
|
remulscllem2 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 4 |
3
|
expr |
|- ( ( ( A e. No /\ B e. No ) /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 5 |
4
|
rexlimdvva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 6 |
|
simpl |
|- ( ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s ( ( -us ` n ) |
| 7 |
|
simpl |
|- ( ( E. m e. NN_s ( ( -us ` m ) E. m e. NN_s ( ( -us ` m ) |
| 8 |
6 7
|
anim12i |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) ( E. n e. NN_s ( ( -us ` n ) |
| 9 |
|
reeanv |
|- ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) ( E. n e. NN_s ( ( -us ` n ) |
| 10 |
8 9
|
sylibr |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) |
| 11 |
5 10
|
impel |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) E. p e. NN_s ( ( -us ` p ) |
| 12 |
|
simpr |
|- ( ( E. n e. NN_s ( ( -us ` n ) A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
| 13 |
|
simpr |
|- ( ( E. m e. NN_s ( ( -us ` m ) B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) |
| 14 |
12 13
|
anim12i |
|- ( ( ( E. n e. NN_s ( ( -us ` n ) ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) |
| 15 |
|
recut |
|- ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 16 |
15
|
adantr |
|- ( ( A e. No /\ B e. No ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 17 |
16
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } < |
| 18 |
|
recut |
|- ( B e. No -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < |
| 19 |
18
|
ad2antlr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } < |
| 20 |
|
simprl |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) ) |
| 21 |
|
simprr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) |
| 22 |
17 19 20 21
|
mulsunif2 |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) ) |
| 23 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) |
| 24 |
23
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) |
| 25 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) |
| 26 |
|
eqeq1 |
|- ( x = t -> ( x = ( A -s ( 1s /su n ) ) <-> t = ( A -s ( 1s /su n ) ) ) ) |
| 27 |
26
|
rexbidv |
|- ( x = t -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A -s ( 1s /su n ) ) ) ) |
| 28 |
27
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) |
| 29 |
24 25 28
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) ) |
| 30 |
|
ovex |
|- ( A -s ( 1s /su n ) ) e. _V |
| 31 |
|
oveq2 |
|- ( t = ( A -s ( 1s /su n ) ) -> ( A -s t ) = ( A -s ( A -s ( 1s /su n ) ) ) ) |
| 32 |
31
|
oveq1d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) |
| 33 |
32
|
oveq2d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 35 |
34
|
rexbidv |
|- ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 36 |
30 35
|
ceqsexv |
|- ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) |
| 37 |
|
r19.41v |
|- ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 38 |
37
|
exbii |
|- ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 39 |
|
rexcom4 |
|- ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 40 |
|
eqeq1 |
|- ( y = u -> ( y = ( B -s ( 1s /su m ) ) <-> u = ( B -s ( 1s /su m ) ) ) ) |
| 41 |
40
|
rexbidv |
|- ( y = u -> ( E. m e. NN_s y = ( B -s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B -s ( 1s /su m ) ) ) ) |
| 42 |
41
|
rexab |
|- ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 43 |
38 39 42
|
3bitr4ri |
|- ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 44 |
36 43
|
bitri |
|- ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) ) |
| 45 |
|
ovex |
|- ( B -s ( 1s /su m ) ) e. _V |
| 46 |
|
oveq2 |
|- ( u = ( B -s ( 1s /su m ) ) -> ( B -s u ) = ( B -s ( B -s ( 1s /su m ) ) ) ) |
| 47 |
46
|
oveq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) |
| 48 |
47
|
oveq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) |
| 49 |
48
|
eqeq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) ) |
| 50 |
45 49
|
ceqsexv |
|- ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) |
| 51 |
|
simplll |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> A e. No ) |
| 52 |
|
1sno |
|- 1s e. No |
| 53 |
52
|
a1i |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> 1s e. No ) |
| 54 |
|
nnsno |
|- ( n e. NN_s -> n e. No ) |
| 55 |
54
|
ad2antlr |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n e. No ) |
| 56 |
|
nnne0s |
|- ( n e. NN_s -> n =/= 0s ) |
| 57 |
56
|
ad2antlr |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n =/= 0s ) |
| 58 |
53 55 57
|
divscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su n ) e. No ) |
| 59 |
51 58
|
nncansd |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( A -s ( A -s ( 1s /su n ) ) ) = ( 1s /su n ) ) |
| 60 |
|
simpllr |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> B e. No ) |
| 61 |
|
nnsno |
|- ( m e. NN_s -> m e. No ) |
| 62 |
61
|
adantl |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m e. No ) |
| 63 |
|
nnne0s |
|- ( m e. NN_s -> m =/= 0s ) |
| 64 |
63
|
adantl |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m =/= 0s ) |
| 65 |
53 62 64
|
divscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su m ) e. No ) |
| 66 |
60 65
|
nncansd |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( B -s ( B -s ( 1s /su m ) ) ) = ( 1s /su m ) ) |
| 67 |
59 66
|
oveq12d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) |
| 68 |
67
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) |
| 69 |
68
|
eqeq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 70 |
50 69
|
bitrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 71 |
70
|
rexbidva |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 72 |
44 71
|
bitrid |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 73 |
72
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 74 |
|
remulscllem1 |
|- ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) |
| 75 |
73 74
|
bitrdi |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) |
| 76 |
29 75
|
bitrid |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) |
| 77 |
76
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) |
| 78 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) |
| 79 |
78
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) |
| 80 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) |
| 81 |
|
eqeq1 |
|- ( x = t -> ( x = ( A +s ( 1s /su n ) ) <-> t = ( A +s ( 1s /su n ) ) ) ) |
| 82 |
81
|
rexbidv |
|- ( x = t -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A +s ( 1s /su n ) ) ) ) |
| 83 |
82
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) |
| 84 |
79 80 83
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) ) |
| 85 |
|
ovex |
|- ( A +s ( 1s /su n ) ) e. _V |
| 86 |
|
oveq1 |
|- ( t = ( A +s ( 1s /su n ) ) -> ( t -s A ) = ( ( A +s ( 1s /su n ) ) -s A ) ) |
| 87 |
86
|
oveq1d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) |
| 88 |
87
|
oveq2d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) |
| 89 |
88
|
eqeq2d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 90 |
89
|
rexbidv |
|- ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 91 |
85 90
|
ceqsexv |
|- ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) |
| 92 |
|
r19.41v |
|- ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 93 |
92
|
exbii |
|- ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 94 |
|
rexcom4 |
|- ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 95 |
|
eqeq1 |
|- ( y = u -> ( y = ( B +s ( 1s /su m ) ) <-> u = ( B +s ( 1s /su m ) ) ) ) |
| 96 |
95
|
rexbidv |
|- ( y = u -> ( E. m e. NN_s y = ( B +s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B +s ( 1s /su m ) ) ) ) |
| 97 |
96
|
rexab |
|- ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 98 |
93 94 97
|
3bitr4ri |
|- ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 99 |
91 98
|
bitri |
|- ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) ) |
| 100 |
|
ovex |
|- ( B +s ( 1s /su m ) ) e. _V |
| 101 |
|
oveq1 |
|- ( u = ( B +s ( 1s /su m ) ) -> ( u -s B ) = ( ( B +s ( 1s /su m ) ) -s B ) ) |
| 102 |
101
|
oveq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) |
| 103 |
102
|
oveq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) |
| 104 |
103
|
eqeq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) ) |
| 105 |
100 104
|
ceqsexv |
|- ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) |
| 106 |
|
pncan2s |
|- ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) ) |
| 107 |
51 58 106
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) ) |
| 108 |
|
pncan2s |
|- ( ( B e. No /\ ( 1s /su m ) e. No ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) ) |
| 109 |
60 65 108
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) ) |
| 110 |
107 109
|
oveq12d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) |
| 111 |
110
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) |
| 112 |
111
|
eqeq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 113 |
105 112
|
bitrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 114 |
113
|
rexbidva |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 115 |
99 114
|
bitrid |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 116 |
115
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 117 |
116 74
|
bitrdi |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) |
| 118 |
84 117
|
bitrid |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) ) |
| 119 |
118
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) |
| 120 |
77 119
|
uneq12d |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) ) |
| 121 |
|
unidm |
|- ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |
| 122 |
120 121
|
eqtrdi |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) |
| 123 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 124 |
123
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 125 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 126 |
27
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 127 |
124 125 126
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) |
| 128 |
31
|
oveq1d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) |
| 129 |
128
|
oveq2d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) |
| 130 |
129
|
eqeq2d |
|- ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 131 |
130
|
rexbidv |
|- ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 132 |
30 131
|
ceqsexv |
|- ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) |
| 133 |
|
r19.41v |
|- ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 134 |
133
|
exbii |
|- ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 135 |
|
rexcom4 |
|- ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 136 |
96
|
rexab |
|- ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 137 |
134 135 136
|
3bitr4ri |
|- ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 138 |
132 137
|
bitri |
|- ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) ) |
| 139 |
101
|
oveq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) |
| 140 |
139
|
oveq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) |
| 141 |
140
|
eqeq2d |
|- ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) ) |
| 142 |
100 141
|
ceqsexv |
|- ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) |
| 143 |
59 109
|
oveq12d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) |
| 144 |
143
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) |
| 145 |
144
|
eqeq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 146 |
142 145
|
bitrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 147 |
146
|
rexbidva |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 148 |
138 147
|
bitrid |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 149 |
148
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 150 |
|
remulscllem1 |
|- ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) |
| 151 |
149 150
|
bitrdi |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) |
| 152 |
127 151
|
bitrid |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) |
| 153 |
152
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) |
| 154 |
|
r19.41v |
|- ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) |
| 155 |
154
|
exbii |
|- ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) |
| 156 |
|
rexcom4 |
|- ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) |
| 157 |
82
|
rexab |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) |
| 158 |
155 156 157
|
3bitr4ri |
|- ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) ) |
| 159 |
86
|
oveq1d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) |
| 160 |
159
|
oveq2d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) |
| 161 |
160
|
eqeq2d |
|- ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 162 |
161
|
rexbidv |
|- ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 163 |
85 162
|
ceqsexv |
|- ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) |
| 164 |
|
r19.41v |
|- ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 165 |
164
|
exbii |
|- ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 166 |
|
rexcom4 |
|- ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 167 |
41
|
rexab |
|- ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 168 |
165 166 167
|
3bitr4ri |
|- ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 169 |
163 168
|
bitri |
|- ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) ) |
| 170 |
46
|
oveq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) |
| 171 |
170
|
oveq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) |
| 172 |
171
|
eqeq2d |
|- ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) ) |
| 173 |
45 172
|
ceqsexv |
|- ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) |
| 174 |
107 66
|
oveq12d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) ) |
| 175 |
174
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) |
| 176 |
175
|
eqeq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 177 |
173 176
|
bitrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 178 |
177
|
rexbidva |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 179 |
169 178
|
bitrid |
|- ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 180 |
179
|
rexbidva |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) ) |
| 181 |
180 150
|
bitrdi |
|- ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) |
| 182 |
158 181
|
bitrid |
|- ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) ) |
| 183 |
182
|
abbidv |
|- ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) |
| 184 |
153 183
|
uneq12d |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) |
| 185 |
|
unidm |
|- ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } |
| 186 |
184 185
|
eqtrdi |
|- ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) |
| 187 |
122 186
|
oveq12d |
|- ( ( A e. No /\ B e. No ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) |
| 188 |
187
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) |
| 189 |
22 188
|
eqtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) |
| 190 |
14 189
|
sylan2 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) ) |
| 191 |
2 11 190
|
jca32 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n ) ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 192 |
191
|
an4s |
|- ( ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 193 |
|
elreno |
|- ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 194 |
|
elreno |
|- ( B e. RR_s <-> ( B e. No /\ ( E. m e. NN_s ( ( -us ` m ) |
| 195 |
193 194
|
anbi12i |
|- ( ( A e. RR_s /\ B e. RR_s ) <-> ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) |
| 196 |
|
elreno |
|- ( ( A x.s B ) e. RR_s <-> ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) |
| 197 |
192 195 196
|
3imtr4i |
|- ( ( A e. RR_s /\ B e. RR_s ) -> ( A x.s B ) e. RR_s ) |