Metamath Proof Explorer


Theorem remulscl

Description: The surreal reals are closed under multiplication. Part of theorem 13(ii) of Conway p. 24. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion remulscl
|- ( ( A e. RR_s /\ B e. RR_s ) -> ( A x.s B ) e. RR_s )

Proof

Step Hyp Ref Expression
1 mulscl
 |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No )
2 1 adantr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A x.s B ) e. No )
3 remulscllem2
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( n e. NN_s /\ m e. NN_s ) /\ ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p ) 
4 3 expr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( n e. NN_s /\ m e. NN_s ) ) -> ( ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p ) 
5 4 rexlimdvva
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  E. p e. NN_s ( ( -us ` p ) 
6 simpl
 |-  ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s ( ( -us ` n ) 
7 simpl
 |-  ( ( E. m e. NN_s ( ( -us ` m )  E. m e. NN_s ( ( -us ` m ) 
8 6 7 anim12i
 |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n ) 
9 reeanv
 |-  ( E. n e. NN_s E. m e. NN_s ( ( ( -us ` n )  ( E. n e. NN_s ( ( -us ` n ) 
10 8 9 sylibr
 |-  ( ( ( E. n e. NN_s ( ( -us ` n )  E. n e. NN_s E. m e. NN_s ( ( ( -us ` n ) 
11 5 10 impel
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  E. p e. NN_s ( ( -us ` p ) 
12 simpr
 |-  ( ( E. n e. NN_s ( ( -us ` n )  A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) )
13 simpr
 |-  ( ( E. m e. NN_s ( ( -us ` m )  B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) )
14 12 13 anim12i
 |-  ( ( ( E. n e. NN_s ( ( -us ` n )  ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) )
15 recut
 |-  ( A e. No -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } <
16 15 adantr
 |-  ( ( A e. No /\ B e. No ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } <
17 16 adantr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } <
18 recut
 |-  ( B e. No -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } <
19 18 ad2antlr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } <
20 simprl
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) )
21 simprr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) )
22 17 19 20 21 mulsunif2
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) )
23 r19.41v
 |-  ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) )
24 23 exbii
 |-  ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) )
25 rexcom4
 |-  ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) )
26 eqeq1
 |-  ( x = t -> ( x = ( A -s ( 1s /su n ) ) <-> t = ( A -s ( 1s /su n ) ) ) )
27 26 rexbidv
 |-  ( x = t -> ( E. n e. NN_s x = ( A -s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A -s ( 1s /su n ) ) ) )
28 27 rexab
 |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) )
29 24 25 28 3bitr4ri
 |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) )
30 ovex
 |-  ( A -s ( 1s /su n ) ) e. _V
31 oveq2
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( A -s t ) = ( A -s ( A -s ( 1s /su n ) ) ) )
32 31 oveq1d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) )
33 32 oveq2d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) )
34 33 eqeq2d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
35 34 rexbidv
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
36 30 35 ceqsexv
 |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) )
37 r19.41v
 |-  ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
38 37 exbii
 |-  ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
39 rexcom4
 |-  ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
40 eqeq1
 |-  ( y = u -> ( y = ( B -s ( 1s /su m ) ) <-> u = ( B -s ( 1s /su m ) ) ) )
41 40 rexbidv
 |-  ( y = u -> ( E. m e. NN_s y = ( B -s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B -s ( 1s /su m ) ) ) )
42 41 rexab
 |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
43 38 39 42 3bitr4ri
 |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
44 36 43 bitri
 |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) )
45 ovex
 |-  ( B -s ( 1s /su m ) ) e. _V
46 oveq2
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( B -s u ) = ( B -s ( B -s ( 1s /su m ) ) ) )
47 46 oveq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) )
48 47 oveq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) )
49 48 eqeq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) )
50 45 49 ceqsexv
 |-  ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) )
51 simplll
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> A e. No )
52 1sno
 |-  1s e. No
53 52 a1i
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> 1s e. No )
54 nnsno
 |-  ( n e. NN_s -> n e. No )
55 54 ad2antlr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n e. No )
56 nnne0s
 |-  ( n e. NN_s -> n =/= 0s )
57 56 ad2antlr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> n =/= 0s )
58 53 55 57 divscld
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su n ) e. No )
59 51 58 nncansd
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( A -s ( A -s ( 1s /su n ) ) ) = ( 1s /su n ) )
60 simpllr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> B e. No )
61 nnsno
 |-  ( m e. NN_s -> m e. No )
62 61 adantl
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m e. No )
63 nnne0s
 |-  ( m e. NN_s -> m =/= 0s )
64 63 adantl
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> m =/= 0s )
65 53 62 64 divscld
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( 1s /su m ) e. No )
66 60 65 nncansd
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( B -s ( B -s ( 1s /su m ) ) ) = ( 1s /su m ) )
67 59 66 oveq12d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) )
68 67 oveq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) )
69 68 eqeq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
70 50 69 bitrid
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
71 70 rexbidva
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
72 44 71 bitrid
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
73 72 rexbidva
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
74 remulscllem1
 |-  ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) )
75 73 74 bitrdi
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) )
76 29 75 bitrid
 |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) )
77 76 abbidv
 |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } )
78 r19.41v
 |-  ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) )
79 78 exbii
 |-  ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) )
80 rexcom4
 |-  ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) )
81 eqeq1
 |-  ( x = t -> ( x = ( A +s ( 1s /su n ) ) <-> t = ( A +s ( 1s /su n ) ) ) )
82 81 rexbidv
 |-  ( x = t -> ( E. n e. NN_s x = ( A +s ( 1s /su n ) ) <-> E. n e. NN_s t = ( A +s ( 1s /su n ) ) ) )
83 82 rexab
 |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) )
84 79 80 83 3bitr4ri
 |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) )
85 ovex
 |-  ( A +s ( 1s /su n ) ) e. _V
86 oveq1
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( t -s A ) = ( ( A +s ( 1s /su n ) ) -s A ) )
87 86 oveq1d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) )
88 87 oveq2d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) )
89 88 eqeq2d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
90 89 rexbidv
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
91 85 90 ceqsexv
 |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) )
92 r19.41v
 |-  ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
93 92 exbii
 |-  ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
94 rexcom4
 |-  ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
95 eqeq1
 |-  ( y = u -> ( y = ( B +s ( 1s /su m ) ) <-> u = ( B +s ( 1s /su m ) ) ) )
96 95 rexbidv
 |-  ( y = u -> ( E. m e. NN_s y = ( B +s ( 1s /su m ) ) <-> E. m e. NN_s u = ( B +s ( 1s /su m ) ) ) )
97 96 rexab
 |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
98 93 94 97 3bitr4ri
 |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
99 91 98 bitri
 |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) )
100 ovex
 |-  ( B +s ( 1s /su m ) ) e. _V
101 oveq1
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( u -s B ) = ( ( B +s ( 1s /su m ) ) -s B ) )
102 101 oveq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) )
103 102 oveq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) )
104 103 eqeq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) )
105 100 104 ceqsexv
 |-  ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) )
106 pncan2s
 |-  ( ( A e. No /\ ( 1s /su n ) e. No ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) )
107 51 58 106 syl2anc
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A +s ( 1s /su n ) ) -s A ) = ( 1s /su n ) )
108 pncan2s
 |-  ( ( B e. No /\ ( 1s /su m ) e. No ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) )
109 60 65 108 syl2anc
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( B +s ( 1s /su m ) ) -s B ) = ( 1s /su m ) )
110 107 109 oveq12d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) )
111 110 oveq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) )
112 111 eqeq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
113 105 112 bitrid
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
114 113 rexbidva
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) -s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
115 99 114 bitrid
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
116 115 rexbidva
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) -s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
117 116 74 bitrdi
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) )
118 84 117 bitrid
 |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) ) )
119 118 abbidv
 |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } )
120 77 119 uneq12d
 |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) )
121 unidm
 |-  ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) }
122 120 121 eqtrdi
 |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } )
123 r19.41v
 |-  ( E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) )
124 123 exbii
 |-  ( E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) )
125 rexcom4
 |-  ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) )
126 27 rexab
 |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. t ( E. n e. NN_s t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) )
127 124 125 126 3bitr4ri
 |-  ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) )
128 31 oveq1d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A -s t ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) )
129 128 oveq2d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) )
130 129 eqeq2d
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
131 130 rexbidv
 |-  ( t = ( A -s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
132 30 131 ceqsexv
 |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) )
133 r19.41v
 |-  ( E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
134 133 exbii
 |-  ( E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
135 rexcom4
 |-  ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
136 96 rexab
 |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. u ( E. m e. NN_s u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
137 134 135 136 3bitr4ri
 |-  ( E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
138 132 137 bitri
 |-  ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) )
139 101 oveq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) = ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) )
140 139 oveq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) )
141 140 eqeq2d
 |-  ( u = ( B +s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) ) )
142 100 141 ceqsexv
 |-  ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) )
143 59 109 oveq12d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) )
144 143 oveq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) )
145 144 eqeq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( ( B +s ( 1s /su m ) ) -s B ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
146 142 145 bitrid
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
147 146 rexbidva
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B +s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( A -s ( A -s ( 1s /su n ) ) ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
148 138 147 bitrid
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
149 148 rexbidva
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
150 remulscllem1
 |-  ( E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) )
151 149 150 bitrdi
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A -s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) )
152 127 151 bitrid
 |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) )
153 152 abbidv
 |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } )
154 r19.41v
 |-  ( E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) )
155 154 exbii
 |-  ( E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) )
156 rexcom4
 |-  ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. t E. n e. NN_s ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) )
157 82 rexab
 |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. t ( E. n e. NN_s t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) )
158 155 156 157 3bitr4ri
 |-  ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) )
159 86 oveq1d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( t -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) )
160 159 oveq2d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) )
161 160 eqeq2d
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
162 161 rexbidv
 |-  ( t = ( A +s ( 1s /su n ) ) -> ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
163 85 162 ceqsexv
 |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) )
164 r19.41v
 |-  ( E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
165 164 exbii
 |-  ( E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
166 rexcom4
 |-  ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. u E. m e. NN_s ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
167 41 rexab
 |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. u ( E. m e. NN_s u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
168 165 166 167 3bitr4ri
 |-  ( E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
169 163 168 bitri
 |-  ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) )
170 46 oveq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) = ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) )
171 170 oveq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) )
172 171 eqeq2d
 |-  ( u = ( B -s ( 1s /su m ) ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) ) )
173 45 172 ceqsexv
 |-  ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) )
174 107 66 oveq12d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) = ( ( 1s /su n ) x.s ( 1s /su m ) ) )
175 174 oveq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) )
176 175 eqeq2d
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s ( B -s ( 1s /su m ) ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
177 173 176 bitrid
 |-  ( ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) /\ m e. NN_s ) -> ( E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
178 177 rexbidva
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. m e. NN_s E. u ( u = ( B -s ( 1s /su m ) ) /\ z = ( ( A x.s B ) +s ( ( ( A +s ( 1s /su n ) ) -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
179 169 178 bitrid
 |-  ( ( ( A e. No /\ B e. No ) /\ n e. NN_s ) -> ( E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
180 179 rexbidva
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. n e. NN_s E. m e. NN_s z = ( ( A x.s B ) +s ( ( 1s /su n ) x.s ( 1s /su m ) ) ) ) )
181 180 150 bitrdi
 |-  ( ( A e. No /\ B e. No ) -> ( E. n e. NN_s E. t ( t = ( A +s ( 1s /su n ) ) /\ E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) )
182 158 181 bitrid
 |-  ( ( A e. No /\ B e. No ) -> ( E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) <-> E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) ) )
183 182 abbidv
 |-  ( ( A e. No /\ B e. No ) -> { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } )
184 153 183 uneq12d
 |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) )
185 unidm
 |-  ( { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } u. { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) }
186 184 185 eqtrdi
 |-  ( ( A e. No /\ B e. No ) -> ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) = { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } )
187 122 186 oveq12d
 |-  ( ( A e. No /\ B e. No ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) )
188 187 adantr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( A -s t ) x.s ( B -s u ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) -s ( ( t -s A ) x.s ( u -s B ) ) ) } ) |s ( { z | E. t e. { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { z | E. t e. { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } E. u e. { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } z = ( ( A x.s B ) +s ( ( t -s A ) x.s ( B -s u ) ) ) } ) ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) )
189 22 188 eqtrd
 |-  ( ( ( A e. No /\ B e. No ) /\ ( A = ( { x | E. n e. NN_s x = ( A -s ( 1s /su n ) ) } |s { x | E. n e. NN_s x = ( A +s ( 1s /su n ) ) } ) /\ B = ( { y | E. m e. NN_s y = ( B -s ( 1s /su m ) ) } |s { y | E. m e. NN_s y = ( B +s ( 1s /su m ) ) } ) ) ) -> ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) )
190 14 189 sylan2
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( A x.s B ) = ( { z | E. p e. NN_s z = ( ( A x.s B ) -s ( 1s /su p ) ) } |s { z | E. p e. NN_s z = ( ( A x.s B ) +s ( 1s /su p ) ) } ) )
191 2 11 190 jca32
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( E. n e. NN_s ( ( -us ` n )  ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) 
192 191 an4s
 |-  ( ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n )  ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) 
193 elreno
 |-  ( A e. RR_s <-> ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) 
194 elreno
 |-  ( B e. RR_s <-> ( B e. No /\ ( E. m e. NN_s ( ( -us ` m ) 
195 193 194 anbi12i
 |-  ( ( A e. RR_s /\ B e. RR_s ) <-> ( ( A e. No /\ ( E. n e. NN_s ( ( -us ` n ) 
196 elreno
 |-  ( ( A x.s B ) e. RR_s <-> ( ( A x.s B ) e. No /\ ( E. p e. NN_s ( ( -us ` p ) 
197 192 195 196 3imtr4i
 |-  ( ( A e. RR_s /\ B e. RR_s ) -> ( A x.s B ) e. RR_s )