Metamath Proof Explorer


Theorem remulscl

Description: The surreal reals are closed under multiplication. Part of theorem 13(ii) of Conway p. 24. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion remulscl ( ( 𝐴 ∈ ℝs𝐵 ∈ ℝs ) → ( 𝐴 ·s 𝐵 ) ∈ ℝs )

Proof

Step Hyp Ref Expression
1 mulscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) ∈ No )
2 1 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( 𝐴 ·s 𝐵 ) ∈ No )
3 remulscllem2 ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) ∧ ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) )
4 3 expr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) ) → ( ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) → ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) )
5 4 rexlimdvva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) → ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) )
6 simpl ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) → ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) )
7 simpl ( ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) → ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) )
8 6 7 anim12i ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) )
9 reeanv ( ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) ↔ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) )
10 8 9 sylibr ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ) )
11 5 10 impel ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) )
12 simpr ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) )
13 simpr ( ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) → 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) )
14 12 13 anim12i ( ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) )
15 recut ( 𝐴 No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } )
16 15 adantr ( ( 𝐴 No 𝐵 No ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } )
17 16 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } )
18 recut ( 𝐵 No → { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } <<s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } )
19 18 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } <<s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } )
20 simprl ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) )
21 simprr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) )
22 17 19 20 21 mulsunif2 ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ) ) )
23 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
24 23 exbii ( ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
25 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
26 eqeq1 ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) )
27 26 rexbidv ( 𝑥 = 𝑡 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) )
28 27 rexab ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
29 24 25 28 3bitr4ri ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
30 ovex ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ V
31 oveq2 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝐴 -s 𝑡 ) = ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) )
32 31 oveq1d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) = ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) )
33 32 oveq2d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) )
34 33 eqeq2d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
35 34 rexbidv ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
36 30 35 ceqsexv ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) )
37 r19.41v ( ∃ 𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
38 37 exbii ( ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
39 rexcom4 ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
40 eqeq1 ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ↔ 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ) )
41 40 rexbidv ( 𝑦 = 𝑢 → ( ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ) )
42 41 rexab ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
43 38 39 42 3bitr4ri ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
44 36 43 bitri ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
45 ovex ( 𝐵 -s ( 1s /su 𝑚 ) ) ∈ V
46 oveq2 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( 𝐵 -s 𝑢 ) = ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) )
47 46 oveq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) = ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) )
48 47 oveq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) )
49 48 eqeq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) ) )
50 45 49 ceqsexv ( ∃ 𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) )
51 simplll ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝐴 No )
52 1sno 1s No
53 52 a1i ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 1s No )
54 nnsno ( 𝑛 ∈ ℕs𝑛 No )
55 54 ad2antlr ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝑛 No )
56 nnne0s ( 𝑛 ∈ ℕs𝑛 ≠ 0s )
57 56 ad2antlr ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝑛 ≠ 0s )
58 53 55 57 divscld ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No )
59 51 58 nncansd ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) )
60 simpllr ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝐵 No )
61 nnsno ( 𝑚 ∈ ℕs𝑚 No )
62 61 adantl ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝑚 No )
63 nnne0s ( 𝑚 ∈ ℕs𝑚 ≠ 0s )
64 63 adantl ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → 𝑚 ≠ 0s )
65 53 62 64 divscld ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 1s /su 𝑚 ) ∈ No )
66 60 65 nncansd ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) = ( 1s /su 𝑚 ) )
67 59 66 oveq12d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) = ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) )
68 67 oveq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) )
69 68 eqeq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
70 50 69 bitrid ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
71 70 rexbidva ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
72 44 71 bitrid ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
73 72 rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
74 remulscllem1 ( ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) )
75 73 74 bitrdi ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) )
76 29 75 bitrid ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) )
77 76 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } )
78 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
79 78 exbii ( ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
80 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
81 eqeq1 ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) )
82 81 rexbidv ( 𝑥 = 𝑡 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) )
83 82 rexab ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
84 79 80 83 3bitr4ri ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
85 ovex ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ V
86 oveq1 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑡 -s 𝐴 ) = ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) )
87 86 oveq1d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) )
88 87 oveq2d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) )
89 88 eqeq2d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
90 89 rexbidv ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
91 85 90 ceqsexv ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) )
92 r19.41v ( ∃ 𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
93 92 exbii ( ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
94 rexcom4 ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
95 eqeq1 ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ↔ 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ) )
96 95 rexbidv ( 𝑦 = 𝑢 → ( ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ) )
97 96 rexab ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
98 93 94 97 3bitr4ri ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
99 91 98 bitri ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
100 ovex ( 𝐵 +s ( 1s /su 𝑚 ) ) ∈ V
101 oveq1 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( 𝑢 -s 𝐵 ) = ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) )
102 101 oveq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) )
103 102 oveq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) )
104 103 eqeq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) ) )
105 100 104 ceqsexv ( ∃ 𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) )
106 pncan2s ( ( 𝐴 No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) = ( 1s /su 𝑛 ) )
107 51 58 106 syl2anc ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) = ( 1s /su 𝑛 ) )
108 pncan2s ( ( 𝐵 No ∧ ( 1s /su 𝑚 ) ∈ No ) → ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) = ( 1s /su 𝑚 ) )
109 60 65 108 syl2anc ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) = ( 1s /su 𝑚 ) )
110 107 109 oveq12d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) = ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) )
111 110 oveq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) )
112 111 eqeq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
113 105 112 bitrid ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
114 113 rexbidva ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
115 99 114 bitrid ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
116 115 rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
117 116 74 bitrdi ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) )
118 84 117 bitrid ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) ) )
119 118 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } )
120 77 119 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) )
121 unidm ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) }
122 120 121 eqtrdi ( ( 𝐴 No 𝐵 No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } )
123 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
124 123 exbii ( ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
125 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
126 27 rexab ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
127 124 125 126 3bitr4ri ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
128 31 oveq1d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) )
129 128 oveq2d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) )
130 129 eqeq2d ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
131 130 rexbidv ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
132 30 131 ceqsexv ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) )
133 r19.41v ( ∃ 𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
134 133 exbii ( ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
135 rexcom4 ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
136 96 rexab ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
137 134 135 136 3bitr4ri ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
138 132 137 bitri ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) )
139 101 oveq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) = ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) )
140 139 oveq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) )
141 140 eqeq2d ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) ) )
142 100 141 ceqsexv ( ∃ 𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) )
143 59 109 oveq12d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) = ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) )
144 143 oveq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) )
145 144 eqeq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( ( 𝐵 +s ( 1s /su 𝑚 ) ) -s 𝐵 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
146 142 145 bitrid ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
147 146 rexbidva ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 +s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
148 138 147 bitrid ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
149 148 rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
150 remulscllem1 ( ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) )
151 149 150 bitrdi ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) )
152 127 151 bitrid ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) )
153 152 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } )
154 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
155 154 exbii ( ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
156 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑡𝑛 ∈ ℕs ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
157 82 rexab ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑡 ( ∃ 𝑛 ∈ ℕs 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
158 155 156 157 3bitr4ri ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
159 86 oveq1d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) = ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) )
160 159 oveq2d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) )
161 160 eqeq2d ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
162 161 rexbidv ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
163 85 162 ceqsexv ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) )
164 r19.41v ( ∃ 𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
165 164 exbii ( ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
166 rexcom4 ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑢𝑚 ∈ ℕs ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
167 41 rexab ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑢 ( ∃ 𝑚 ∈ ℕs 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
168 165 166 167 3bitr4ri ( ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
169 163 168 bitri ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) )
170 46 oveq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) = ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) )
171 170 oveq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) )
172 171 eqeq2d ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) ) )
173 45 172 ceqsexv ( ∃ 𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) )
174 107 66 oveq12d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) = ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) )
175 174 oveq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) )
176 175 eqeq2d ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s ( 𝐵 -s ( 1s /su 𝑚 ) ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
177 173 176 bitrid ( ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) ∧ 𝑚 ∈ ℕs ) → ( ∃ 𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
178 177 rexbidva ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑚 ∈ ℕs𝑢 ( 𝑢 = ( 𝐵 -s ( 1s /su 𝑚 ) ) ∧ 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( ( 𝐴 +s ( 1s /su 𝑛 ) ) -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
179 169 178 bitrid ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs ) → ( ∃ 𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
180 179 rexbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 1s /su 𝑛 ) ·s ( 1s /su 𝑚 ) ) ) ) )
181 180 150 bitrdi ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑛 ∈ ℕs𝑡 ( 𝑡 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) )
182 158 181 bitrid ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) ↔ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) ) )
183 182 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } )
184 153 183 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) )
185 unidm ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ∪ { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) }
186 184 185 eqtrdi ( ( 𝐴 No 𝐵 No ) → ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ) = { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } )
187 122 186 oveq12d ( ( 𝐴 No 𝐵 No ) → ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ) ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) )
188 187 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝐴 -s 𝑡 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( ( 𝑡 -s 𝐴 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ) |s ( { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝐴 -s 𝑡 ) ·s ( 𝑢 -s 𝐵 ) ) ) } ∪ { 𝑧 ∣ ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ∃ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( ( 𝑡 -s 𝐴 ) ·s ( 𝐵 -s 𝑢 ) ) ) } ) ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) )
189 22 188 eqtrd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) → ( 𝐴 ·s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) )
190 14 189 sylan2 ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( 𝐴 ·s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) )
191 2 11 190 jca32 ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 ·s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) )
192 191 an4s ( ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ∧ ( 𝐵 No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 ·s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) )
193 elreno ( 𝐴 ∈ ℝs ↔ ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) )
194 elreno ( 𝐵 ∈ ℝs ↔ ( 𝐵 No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) )
195 193 194 anbi12i ( ( 𝐴 ∈ ℝs𝐵 ∈ ℝs ) ↔ ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ∧ ( 𝐵 No ∧ ( ∃ 𝑚 ∈ ℕs ( ( -us𝑚 ) <s 𝐵𝐵 <s 𝑚 ) ∧ 𝐵 = ( { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 -s ( 1s /su 𝑚 ) ) } |s { 𝑦 ∣ ∃ 𝑚 ∈ ℕs 𝑦 = ( 𝐵 +s ( 1s /su 𝑚 ) ) } ) ) ) ) )
196 elreno ( ( 𝐴 ·s 𝐵 ) ∈ ℝs ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ∃ 𝑝 ∈ ℕs ( ( -us𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ∧ ( 𝐴 ·s 𝐵 ) = ( { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) -s ( 1s /su 𝑝 ) ) } |s { 𝑧 ∣ ∃ 𝑝 ∈ ℕs 𝑧 = ( ( 𝐴 ·s 𝐵 ) +s ( 1s /su 𝑝 ) ) } ) ) ) )
197 192 195 196 3imtr4i ( ( 𝐴 ∈ ℝs𝐵 ∈ ℝs ) → ( 𝐴 ·s 𝐵 ) ∈ ℝs )