| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsunif2.1 | ⊢ ( 𝜑  →  𝐿  <<s  𝑅 ) | 
						
							| 2 |  | mulsunif2.2 | ⊢ ( 𝜑  →  𝑀  <<s  𝑆 ) | 
						
							| 3 |  | mulsunif2.3 | ⊢ ( 𝜑  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 4 |  | mulsunif2.4 | ⊢ ( 𝜑  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 5 | 1 2 3 4 | mulsunif2lem | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐵 )  =  ( ( { 𝑒  ∣  ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) }  ∪  { 𝑓  ∣  ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) } )  |s  ( { 𝑔  ∣  ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) }  ∪  { ℎ  ∣  ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) } ) ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑒  =  𝑎  →  ( 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) ) ) | 
						
							| 7 | 6 | 2rexbidv | ⊢ ( 𝑒  =  𝑎  →  ( ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑖  =  𝑝  →  ( 𝐴  -s  𝑖 )  =  ( 𝐴  -s  𝑝 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑖  =  𝑝  →  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) )  =  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑖  =  𝑝  →  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) ) ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑖  =  𝑝  →  ( 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) ) ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑗  =  𝑞  →  ( 𝐵  -s  𝑗 )  =  ( 𝐵  -s  𝑞 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑗  =  𝑞  →  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) )  =  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑗  =  𝑞  →  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑗  =  𝑞  →  ( 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) ) ) | 
						
							| 16 | 11 15 | cbvrex2vw | ⊢ ( ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) ) | 
						
							| 17 | 7 16 | bitrdi | ⊢ ( 𝑒  =  𝑎  →  ( ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) )  ↔  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) ) ) | 
						
							| 18 | 17 | cbvabv | ⊢ { 𝑒  ∣  ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) }  =  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) } | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑓  =  𝑏  →  ( 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) ) ) | 
						
							| 20 | 19 | 2rexbidv | ⊢ ( 𝑓  =  𝑏  →  ( ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑘  =  𝑟  →  ( 𝑘  -s  𝐴 )  =  ( 𝑟  -s  𝐴 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑘  =  𝑟  →  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) )  =  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑘  =  𝑟  →  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑘  =  𝑟  →  ( 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑙  =  𝑠  →  ( 𝑙  -s  𝐵 )  =  ( 𝑠  -s  𝐵 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑙  =  𝑠  →  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) )  =  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑙  =  𝑠  →  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) ) | 
						
							| 28 | 27 | eqeq2d | ⊢ ( 𝑙  =  𝑠  →  ( 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) ) ) | 
						
							| 29 | 24 28 | cbvrex2vw | ⊢ ( ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) ) | 
						
							| 30 | 20 29 | bitrdi | ⊢ ( 𝑓  =  𝑏  →  ( ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) )  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) ) ) | 
						
							| 31 | 30 | cbvabv | ⊢ { 𝑓  ∣  ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) }  =  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) } | 
						
							| 32 | 18 31 | uneq12i | ⊢ ( { 𝑒  ∣  ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) }  ∪  { 𝑓  ∣  ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) } ) | 
						
							| 33 |  | eqeq1 | ⊢ ( 𝑔  =  𝑐  →  ( 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) ) ) | 
						
							| 34 | 33 | 2rexbidv | ⊢ ( 𝑔  =  𝑐  →  ( ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) ) ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑚  =  𝑡  →  ( 𝐴  -s  𝑚 )  =  ( 𝐴  -s  𝑡 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑚  =  𝑡  →  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) )  =  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑚  =  𝑡  →  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) ) ) ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( 𝑚  =  𝑡  →  ( 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) ) ) ) ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑛  =  𝑢  →  ( 𝑛  -s  𝐵 )  =  ( 𝑢  -s  𝐵 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑛  =  𝑢  →  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) )  =  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑛  =  𝑢  →  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( 𝑛  =  𝑢  →  ( 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) ) ) | 
						
							| 43 | 38 42 | cbvrex2vw | ⊢ ( ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) ) | 
						
							| 44 | 34 43 | bitrdi | ⊢ ( 𝑔  =  𝑐  →  ( ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) )  ↔  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) ) ) | 
						
							| 45 | 44 | cbvabv | ⊢ { 𝑔  ∣  ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) }  =  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) } | 
						
							| 46 |  | eqeq1 | ⊢ ( ℎ  =  𝑑  →  ( ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) ) ) | 
						
							| 47 | 46 | 2rexbidv | ⊢ ( ℎ  =  𝑑  →  ( ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) ) ) | 
						
							| 48 |  | oveq1 | ⊢ ( 𝑜  =  𝑣  →  ( 𝑜  -s  𝐴 )  =  ( 𝑣  -s  𝐴 ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( 𝑜  =  𝑣  →  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) )  =  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝑜  =  𝑣  →  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( 𝑜  =  𝑣  →  ( 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐵  -s  𝑥 )  =  ( 𝐵  -s  𝑤 ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) )  =  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑥  =  𝑤  →  ( 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) ) ) | 
						
							| 56 | 51 55 | cbvrex2vw | ⊢ ( ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) ) | 
						
							| 57 | 47 56 | bitrdi | ⊢ ( ℎ  =  𝑑  →  ( ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) )  ↔  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) ) ) | 
						
							| 58 | 57 | cbvabv | ⊢ { ℎ  ∣  ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) }  =  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) } | 
						
							| 59 | 45 58 | uneq12i | ⊢ ( { 𝑔  ∣  ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) }  ∪  { ℎ  ∣  ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) } )  =  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) } ) | 
						
							| 60 | 32 59 | oveq12i | ⊢ ( ( { 𝑒  ∣  ∃ 𝑖  ∈  𝐿 ∃ 𝑗  ∈  𝑀 𝑒  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑖 )  ·s  ( 𝐵  -s  𝑗 ) ) ) }  ∪  { 𝑓  ∣  ∃ 𝑘  ∈  𝑅 ∃ 𝑙  ∈  𝑆 𝑓  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑘  -s  𝐴 )  ·s  ( 𝑙  -s  𝐵 ) ) ) } )  |s  ( { 𝑔  ∣  ∃ 𝑚  ∈  𝐿 ∃ 𝑛  ∈  𝑆 𝑔  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑚 )  ·s  ( 𝑛  -s  𝐵 ) ) ) }  ∪  { ℎ  ∣  ∃ 𝑜  ∈  𝑅 ∃ 𝑥  ∈  𝑀 ℎ  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑜  -s  𝐴 )  ·s  ( 𝐵  -s  𝑥 ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) } ) ) | 
						
							| 61 | 5 60 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐵 )  =  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝐴  -s  𝑝 )  ·s  ( 𝐵  -s  𝑞 ) ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( 𝐴  ·s  𝐵 )  -s  ( ( 𝑟  -s  𝐴 )  ·s  ( 𝑠  -s  𝐵 ) ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝐴  -s  𝑡 )  ·s  ( 𝑢  -s  𝐵 ) ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( 𝐴  ·s  𝐵 )  +s  ( ( 𝑣  -s  𝐴 )  ·s  ( 𝐵  -s  𝑤 ) ) ) } ) ) ) |