| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑝  =  ( 𝑁  ·s  𝑀 )  →  ( ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝  ↔  ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  ( 𝑁  ·s  𝑀 ) ) ) | 
						
							| 2 |  | nnmulscl | ⊢ ( ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs )  →  ( 𝑁  ·s  𝑀 )  ∈  ℕs ) | 
						
							| 3 | 2 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( 𝑁  ·s  𝑀 )  ∈  ℕs ) | 
						
							| 4 |  | absmuls | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( abss ‘ ( 𝐴  ·s  𝐵 ) )  =  ( ( abss ‘ 𝐴 )  ·s  ( abss ‘ 𝐵 ) ) ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ ( 𝐴  ·s  𝐵 ) )  =  ( ( abss ‘ 𝐴 )  ·s  ( abss ‘ 𝐵 ) ) ) | 
						
							| 6 |  | absscl | ⊢ ( 𝐴  ∈   No   →  ( abss ‘ 𝐴 )  ∈   No  ) | 
						
							| 7 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ 𝐴 )  ∈   No  ) | 
						
							| 8 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  𝑁  ∈  ℕs ) | 
						
							| 9 | 8 | nnsnod | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  𝑁  ∈   No  ) | 
						
							| 10 |  | absscl | ⊢ ( 𝐵  ∈   No   →  ( abss ‘ 𝐵 )  ∈   No  ) | 
						
							| 11 | 10 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ 𝐵 )  ∈   No  ) | 
						
							| 12 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  𝑀  ∈  ℕs ) | 
						
							| 13 | 12 | nnsnod | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  𝑀  ∈   No  ) | 
						
							| 14 |  | abssge0 | ⊢ ( 𝐴  ∈   No   →   0s   ≤s  ( abss ‘ 𝐴 ) ) | 
						
							| 15 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →   0s   ≤s  ( abss ‘ 𝐴 ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ 𝐴 )  <s  𝑁 ) | 
						
							| 17 |  | abssge0 | ⊢ ( 𝐵  ∈   No   →   0s   ≤s  ( abss ‘ 𝐵 ) ) | 
						
							| 18 | 17 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →   0s   ≤s  ( abss ‘ 𝐵 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ 𝐵 )  <s  𝑀 ) | 
						
							| 20 | 7 9 11 13 15 16 18 19 | sltmul12ad | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( ( abss ‘ 𝐴 )  ·s  ( abss ‘ 𝐵 ) )  <s  ( 𝑁  ·s  𝑀 ) ) | 
						
							| 21 | 5 20 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  ( 𝑁  ·s  𝑀 ) ) | 
						
							| 22 | 1 3 21 | rspcedvdw | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 ) )  →  ∃ 𝑝  ∈  ℕs ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝 ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  →  ( ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 )  →  ∃ 𝑝  ∈  ℕs ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝 ) ) | 
						
							| 24 |  | nnsno | ⊢ ( 𝑁  ∈  ℕs  →  𝑁  ∈   No  ) | 
						
							| 25 |  | absslt | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈   No  )  →  ( ( abss ‘ 𝐴 )  <s  𝑁  ↔  ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 ) ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℕs )  →  ( ( abss ‘ 𝐴 )  <s  𝑁  ↔  ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 ) ) ) | 
						
							| 27 |  | nnsno | ⊢ ( 𝑀  ∈  ℕs  →  𝑀  ∈   No  ) | 
						
							| 28 |  | absslt | ⊢ ( ( 𝐵  ∈   No   ∧  𝑀  ∈   No  )  →  ( ( abss ‘ 𝐵 )  <s  𝑀  ↔  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) ) ) | 
						
							| 29 | 27 28 | sylan2 | ⊢ ( ( 𝐵  ∈   No   ∧  𝑀  ∈  ℕs )  →  ( ( abss ‘ 𝐵 )  <s  𝑀  ↔  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) ) ) | 
						
							| 30 | 26 29 | bi2anan9 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℕs )  ∧  ( 𝐵  ∈   No   ∧  𝑀  ∈  ℕs ) )  →  ( ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 )  ↔  ( ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 )  ∧  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) ) ) ) | 
						
							| 31 | 30 | an4s | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  →  ( ( ( abss ‘ 𝐴 )  <s  𝑁  ∧  ( abss ‘ 𝐵 )  <s  𝑀 )  ↔  ( ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 )  ∧  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) ) ) ) | 
						
							| 32 |  | mulscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 34 |  | nnsno | ⊢ ( 𝑝  ∈  ℕs  →  𝑝  ∈   No  ) | 
						
							| 35 |  | absslt | ⊢ ( ( ( 𝐴  ·s  𝐵 )  ∈   No   ∧  𝑝  ∈   No  )  →  ( ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝  ↔  ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  ·s  𝐵 )  ∧  ( 𝐴  ·s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 36 | 33 34 35 | syl2an | ⊢ ( ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  ∧  𝑝  ∈  ℕs )  →  ( ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝  ↔  ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  ·s  𝐵 )  ∧  ( 𝐴  ·s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 37 | 36 | rexbidva | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  →  ( ∃ 𝑝  ∈  ℕs ( abss ‘ ( 𝐴  ·s  𝐵 ) )  <s  𝑝  ↔  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  ·s  𝐵 )  ∧  ( 𝐴  ·s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 38 | 23 31 37 | 3imtr3d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs ) )  →  ( ( ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 )  ∧  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  ·s  𝐵 )  ∧  ( 𝐴  ·s  𝐵 )  <s  𝑝 ) ) ) | 
						
							| 39 | 38 | impr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( ( 𝑁  ∈  ℕs  ∧  𝑀  ∈  ℕs )  ∧  ( ( (  -us  ‘ 𝑁 )  <s  𝐴  ∧  𝐴  <s  𝑁 )  ∧  ( (  -us  ‘ 𝑀 )  <s  𝐵  ∧  𝐵  <s  𝑀 ) ) ) )  →  ∃ 𝑝  ∈  ℕs ( (  -us  ‘ 𝑝 )  <s  ( 𝐴  ·s  𝐵 )  ∧  ( 𝐴  ·s  𝐵 )  <s  𝑝 ) ) |