Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑁 ·s 𝑀 ) → ( ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ↔ ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s ( 𝑁 ·s 𝑀 ) ) ) |
2 |
|
nnmulscl |
⊢ ( ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) → ( 𝑁 ·s 𝑀 ) ∈ ℕs ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( 𝑁 ·s 𝑀 ) ∈ ℕs ) |
4 |
|
absmuls |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( abss ‘ ( 𝐴 ·s 𝐵 ) ) = ( ( abss ‘ 𝐴 ) ·s ( abss ‘ 𝐵 ) ) ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ ( 𝐴 ·s 𝐵 ) ) = ( ( abss ‘ 𝐴 ) ·s ( abss ‘ 𝐵 ) ) ) |
6 |
|
absscl |
⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) ∈ No ) |
7 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ 𝐴 ) ∈ No ) |
8 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 𝑁 ∈ ℕs ) |
9 |
8
|
nnsnod |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 𝑁 ∈ No ) |
10 |
|
absscl |
⊢ ( 𝐵 ∈ No → ( abss ‘ 𝐵 ) ∈ No ) |
11 |
10
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ 𝐵 ) ∈ No ) |
12 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 𝑀 ∈ ℕs ) |
13 |
12
|
nnsnod |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 𝑀 ∈ No ) |
14 |
|
abssge0 |
⊢ ( 𝐴 ∈ No → 0s ≤s ( abss ‘ 𝐴 ) ) |
15 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 0s ≤s ( abss ‘ 𝐴 ) ) |
16 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ 𝐴 ) <s 𝑁 ) |
17 |
|
abssge0 |
⊢ ( 𝐵 ∈ No → 0s ≤s ( abss ‘ 𝐵 ) ) |
18 |
17
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → 0s ≤s ( abss ‘ 𝐵 ) ) |
19 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ 𝐵 ) <s 𝑀 ) |
20 |
7 9 11 13 15 16 18 19
|
sltmul12ad |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( ( abss ‘ 𝐴 ) ·s ( abss ‘ 𝐵 ) ) <s ( 𝑁 ·s 𝑀 ) ) |
21 |
5 20
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s ( 𝑁 ·s 𝑀 ) ) |
22 |
1 3 21
|
rspcedvdw |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ) → ∃ 𝑝 ∈ ℕs ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ) |
23 |
22
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) → ( ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) → ∃ 𝑝 ∈ ℕs ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ) ) |
24 |
|
nnsno |
⊢ ( 𝑁 ∈ ℕs → 𝑁 ∈ No ) |
25 |
|
absslt |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ No ) → ( ( abss ‘ 𝐴 ) <s 𝑁 ↔ ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ) ) |
26 |
24 25
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( ( abss ‘ 𝐴 ) <s 𝑁 ↔ ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ) ) |
27 |
|
nnsno |
⊢ ( 𝑀 ∈ ℕs → 𝑀 ∈ No ) |
28 |
|
absslt |
⊢ ( ( 𝐵 ∈ No ∧ 𝑀 ∈ No ) → ( ( abss ‘ 𝐵 ) <s 𝑀 ↔ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) ) |
29 |
27 28
|
sylan2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝑀 ∈ ℕs ) → ( ( abss ‘ 𝐵 ) <s 𝑀 ↔ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) ) |
30 |
26 29
|
bi2anan9 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) ∧ ( 𝐵 ∈ No ∧ 𝑀 ∈ ℕs ) ) → ( ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ↔ ( ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ∧ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) ) ) |
31 |
30
|
an4s |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) → ( ( ( abss ‘ 𝐴 ) <s 𝑁 ∧ ( abss ‘ 𝐵 ) <s 𝑀 ) ↔ ( ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ∧ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) ) ) |
32 |
|
mulscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
34 |
|
nnsno |
⊢ ( 𝑝 ∈ ℕs → 𝑝 ∈ No ) |
35 |
|
absslt |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ 𝑝 ∈ No ) → ( ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ↔ ( ( -us ‘ 𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) ) |
36 |
33 34 35
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) ∧ 𝑝 ∈ ℕs ) → ( ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ↔ ( ( -us ‘ 𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) ) |
37 |
36
|
rexbidva |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) → ( ∃ 𝑝 ∈ ℕs ( abss ‘ ( 𝐴 ·s 𝐵 ) ) <s 𝑝 ↔ ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) ) |
38 |
23 31 37
|
3imtr3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ) → ( ( ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ∧ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) ) |
39 |
38
|
impr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( 𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs ) ∧ ( ( ( -us ‘ 𝑁 ) <s 𝐴 ∧ 𝐴 <s 𝑁 ) ∧ ( ( -us ‘ 𝑀 ) <s 𝐵 ∧ 𝐵 <s 𝑀 ) ) ) ) → ∃ 𝑝 ∈ ℕs ( ( -us ‘ 𝑝 ) <s ( 𝐴 ·s 𝐵 ) ∧ ( 𝐴 ·s 𝐵 ) <s 𝑝 ) ) |