| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  | 
						
							| 2 |  | nnmulscl |  | 
						
							| 3 | 2 | ad2antlr |  | 
						
							| 4 |  | absmuls |  | 
						
							| 5 | 4 | ad2antrr |  | 
						
							| 6 |  | absscl |  | 
						
							| 7 | 6 | ad3antrrr |  | 
						
							| 8 |  | simplrl |  | 
						
							| 9 | 8 | nnsnod |  | 
						
							| 10 |  | absscl |  | 
						
							| 11 | 10 | ad3antlr |  | 
						
							| 12 |  | simplrr |  | 
						
							| 13 | 12 | nnsnod |  | 
						
							| 14 |  | abssge0 |  | 
						
							| 15 | 14 | ad3antrrr |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 |  | abssge0 |  | 
						
							| 18 | 17 | ad3antlr |  | 
						
							| 19 |  | simprr |  | 
						
							| 20 | 7 9 11 13 15 16 18 19 | sltmul12ad |  | 
						
							| 21 | 5 20 | eqbrtrd |  | 
						
							| 22 | 1 3 21 | rspcedvdw |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 |  | nnsno |  | 
						
							| 25 |  | absslt |  | 
						
							| 26 | 24 25 | sylan2 |  | 
						
							| 27 |  | nnsno |  | 
						
							| 28 |  | absslt |  | 
						
							| 29 | 27 28 | sylan2 |  | 
						
							| 30 | 26 29 | bi2anan9 |  | 
						
							| 31 | 30 | an4s |  | 
						
							| 32 |  | mulscl |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | nnsno |  | 
						
							| 35 |  | absslt |  | 
						
							| 36 | 33 34 35 | syl2an |  | 
						
							| 37 | 36 | rexbidva |  | 
						
							| 38 | 23 31 37 | 3imtr3d |  | 
						
							| 39 | 38 | impr |  |