Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|
2 |
|
nnmulscl |
|
3 |
2
|
ad2antlr |
|
4 |
|
absmuls |
|
5 |
4
|
ad2antrr |
|
6 |
|
absscl |
|
7 |
6
|
ad3antrrr |
|
8 |
|
simplrl |
|
9 |
8
|
nnsnod |
|
10 |
|
absscl |
|
11 |
10
|
ad3antlr |
|
12 |
|
simplrr |
|
13 |
12
|
nnsnod |
|
14 |
|
abssge0 |
|
15 |
14
|
ad3antrrr |
|
16 |
|
simprl |
|
17 |
|
abssge0 |
|
18 |
17
|
ad3antlr |
|
19 |
|
simprr |
|
20 |
7 9 11 13 15 16 18 19
|
sltmul12ad |
|
21 |
5 20
|
eqbrtrd |
|
22 |
1 3 21
|
rspcedvdw |
|
23 |
22
|
ex |
|
24 |
|
nnsno |
|
25 |
|
absslt |
|
26 |
24 25
|
sylan2 |
|
27 |
|
nnsno |
|
28 |
|
absslt |
|
29 |
27 28
|
sylan2 |
|
30 |
26 29
|
bi2anan9 |
|
31 |
30
|
an4s |
|
32 |
|
mulscl |
|
33 |
32
|
adantr |
|
34 |
|
nnsno |
|
35 |
|
absslt |
|
36 |
33 34 35
|
syl2an |
|
37 |
36
|
rexbidva |
|
38 |
23 31 37
|
3imtr3d |
|
39 |
38
|
impr |
|