Metamath Proof Explorer


Theorem remulscllem2

Description: Lemma for remulscl . Bound A and B above and below. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion remulscllem2 A No B No N s M s + s N < s A A < s N + s M < s B B < s M p s + s p < s A s B A s B < s p

Proof

Step Hyp Ref Expression
1 breq2 p = N s M abs s A s B < s p abs s A s B < s N s M
2 nnmulscl N s M s N s M s
3 2 ad2antlr A No B No N s M s abs s A < s N abs s B < s M N s M s
4 absmuls A No B No abs s A s B = abs s A s abs s B
5 4 ad2antrr A No B No N s M s abs s A < s N abs s B < s M abs s A s B = abs s A s abs s B
6 absscl A No abs s A No
7 6 ad3antrrr A No B No N s M s abs s A < s N abs s B < s M abs s A No
8 simplrl A No B No N s M s abs s A < s N abs s B < s M N s
9 8 nnsnod A No B No N s M s abs s A < s N abs s B < s M N No
10 absscl B No abs s B No
11 10 ad3antlr A No B No N s M s abs s A < s N abs s B < s M abs s B No
12 simplrr A No B No N s M s abs s A < s N abs s B < s M M s
13 12 nnsnod A No B No N s M s abs s A < s N abs s B < s M M No
14 abssge0 A No 0 s s abs s A
15 14 ad3antrrr A No B No N s M s abs s A < s N abs s B < s M 0 s s abs s A
16 simprl A No B No N s M s abs s A < s N abs s B < s M abs s A < s N
17 abssge0 B No 0 s s abs s B
18 17 ad3antlr A No B No N s M s abs s A < s N abs s B < s M 0 s s abs s B
19 simprr A No B No N s M s abs s A < s N abs s B < s M abs s B < s M
20 7 9 11 13 15 16 18 19 sltmul12ad A No B No N s M s abs s A < s N abs s B < s M abs s A s abs s B < s N s M
21 5 20 eqbrtrd A No B No N s M s abs s A < s N abs s B < s M abs s A s B < s N s M
22 1 3 21 rspcedvdw A No B No N s M s abs s A < s N abs s B < s M p s abs s A s B < s p
23 22 ex A No B No N s M s abs s A < s N abs s B < s M p s abs s A s B < s p
24 nnsno N s N No
25 absslt A No N No abs s A < s N + s N < s A A < s N
26 24 25 sylan2 A No N s abs s A < s N + s N < s A A < s N
27 nnsno M s M No
28 absslt B No M No abs s B < s M + s M < s B B < s M
29 27 28 sylan2 B No M s abs s B < s M + s M < s B B < s M
30 26 29 bi2anan9 A No N s B No M s abs s A < s N abs s B < s M + s N < s A A < s N + s M < s B B < s M
31 30 an4s A No B No N s M s abs s A < s N abs s B < s M + s N < s A A < s N + s M < s B B < s M
32 mulscl A No B No A s B No
33 32 adantr A No B No N s M s A s B No
34 nnsno p s p No
35 absslt A s B No p No abs s A s B < s p + s p < s A s B A s B < s p
36 33 34 35 syl2an A No B No N s M s p s abs s A s B < s p + s p < s A s B A s B < s p
37 36 rexbidva A No B No N s M s p s abs s A s B < s p p s + s p < s A s B A s B < s p
38 23 31 37 3imtr3d A No B No N s M s + s N < s A A < s N + s M < s B B < s M p s + s p < s A s B A s B < s p
39 38 impr A No B No N s M s + s N < s A A < s N + s M < s B B < s M p s + s p < s A s B A s B < s p