Metamath Proof Explorer


Theorem absmuls

Description: Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion absmuls A No B No abs s A s B = abs s A s abs s B

Proof

Step Hyp Ref Expression
1 mulscl A No B No A s B No
2 1 adantr A No B No 0 s s A A s B No
3 simplll A No B No 0 s s A 0 s s B A No
4 simpllr A No B No 0 s s A 0 s s B B No
5 simplr A No B No 0 s s A 0 s s B 0 s s A
6 simpr A No B No 0 s s A 0 s s B 0 s s B
7 3 4 5 6 mulsge0d A No B No 0 s s A 0 s s B 0 s s A s B
8 abssid A s B No 0 s s A s B abs s A s B = A s B
9 2 7 8 syl2an2r A No B No 0 s s A 0 s s B abs s A s B = A s B
10 abssid B No 0 s s B abs s B = B
11 10 ad4ant24 A No B No 0 s s A 0 s s B abs s B = B
12 11 oveq2d A No B No 0 s s A 0 s s B A s abs s B = A s B
13 9 12 eqtr4d A No B No 0 s s A 0 s s B abs s A s B = A s abs s B
14 simplll A No B No 0 s s A B s 0 s A No
15 simpllr A No B No 0 s s A B s 0 s B No
16 14 15 mulnegs2d A No B No 0 s s A B s 0 s A s + s B = + s A s B
17 abssnid B No B s 0 s abs s B = + s B
18 17 ad4ant24 A No B No 0 s s A B s 0 s abs s B = + s B
19 18 oveq2d A No B No 0 s s A B s 0 s A s abs s B = A s + s B
20 negs0s + s 0 s = 0 s
21 15 negscld A No B No 0 s s A B s 0 s + s B No
22 simplr A No B No 0 s s A B s 0 s 0 s s A
23 simpr A No B No 0 s s A B s 0 s B s 0 s
24 0sno 0 s No
25 24 a1i A No B No 0 s s A B s 0 s 0 s No
26 15 25 slenegd A No B No 0 s s A B s 0 s B s 0 s + s 0 s s + s B
27 23 26 mpbid A No B No 0 s s A B s 0 s + s 0 s s + s B
28 20 27 eqbrtrrid A No B No 0 s s A B s 0 s 0 s s + s B
29 14 21 22 28 mulsge0d A No B No 0 s s A B s 0 s 0 s s A s + s B
30 29 16 breqtrd A No B No 0 s s A B s 0 s 0 s s + s A s B
31 20 30 eqbrtrid A No B No 0 s s A B s 0 s + s 0 s s + s A s B
32 2 adantr A No B No 0 s s A B s 0 s A s B No
33 32 25 slenegd A No B No 0 s s A B s 0 s A s B s 0 s + s 0 s s + s A s B
34 31 33 mpbird A No B No 0 s s A B s 0 s A s B s 0 s
35 abssnid A s B No A s B s 0 s abs s A s B = + s A s B
36 2 34 35 syl2an2r A No B No 0 s s A B s 0 s abs s A s B = + s A s B
37 16 19 36 3eqtr4rd A No B No 0 s s A B s 0 s abs s A s B = A s abs s B
38 sletric 0 s No B No 0 s s B B s 0 s
39 24 38 mpan B No 0 s s B B s 0 s
40 39 ad2antlr A No B No 0 s s A 0 s s B B s 0 s
41 13 37 40 mpjaodan A No B No 0 s s A abs s A s B = A s abs s B
42 abssid A No 0 s s A abs s A = A
43 42 adantlr A No B No 0 s s A abs s A = A
44 43 oveq1d A No B No 0 s s A abs s A s abs s B = A s abs s B
45 41 44 eqtr4d A No B No 0 s s A abs s A s B = abs s A s abs s B
46 simplll A No B No A s 0 s 0 s s B A No
47 simpllr A No B No A s 0 s 0 s s B B No
48 46 47 mulnegs1d A No B No A s 0 s 0 s s B + s A s B = + s A s B
49 10 ad4ant24 A No B No A s 0 s 0 s s B abs s B = B
50 49 oveq2d A No B No A s 0 s 0 s s B + s A s abs s B = + s A s B
51 1 adantr A No B No A s 0 s A s B No
52 46 negscld A No B No A s 0 s 0 s s B + s A No
53 simplr A No B No A s 0 s 0 s s B A s 0 s
54 24 a1i A No B No A s 0 s 0 s s B 0 s No
55 46 54 slenegd A No B No A s 0 s 0 s s B A s 0 s + s 0 s s + s A
56 53 55 mpbid A No B No A s 0 s 0 s s B + s 0 s s + s A
57 20 56 eqbrtrrid A No B No A s 0 s 0 s s B 0 s s + s A
58 simpr A No B No A s 0 s 0 s s B 0 s s B
59 52 47 57 58 mulsge0d A No B No A s 0 s 0 s s B 0 s s + s A s B
60 59 48 breqtrd A No B No A s 0 s 0 s s B 0 s s + s A s B
61 20 60 eqbrtrid A No B No A s 0 s 0 s s B + s 0 s s + s A s B
62 51 adantr A No B No A s 0 s 0 s s B A s B No
63 62 54 slenegd A No B No A s 0 s 0 s s B A s B s 0 s + s 0 s s + s A s B
64 61 63 mpbird A No B No A s 0 s 0 s s B A s B s 0 s
65 51 64 35 syl2an2r A No B No A s 0 s 0 s s B abs s A s B = + s A s B
66 48 50 65 3eqtr4rd A No B No A s 0 s 0 s s B abs s A s B = + s A s abs s B
67 simplll A No B No A s 0 s B s 0 s A No
68 simpllr A No B No A s 0 s B s 0 s B No
69 67 68 mul2negsd A No B No A s 0 s B s 0 s + s A s + s B = A s B
70 17 ad4ant24 A No B No A s 0 s B s 0 s abs s B = + s B
71 70 oveq2d A No B No A s 0 s B s 0 s + s A s abs s B = + s A s + s B
72 67 negscld A No B No A s 0 s B s 0 s + s A No
73 68 negscld A No B No A s 0 s B s 0 s + s B No
74 simplr A No B No A s 0 s B s 0 s A s 0 s
75 24 a1i A No B No A s 0 s B s 0 s 0 s No
76 67 75 slenegd A No B No A s 0 s B s 0 s A s 0 s + s 0 s s + s A
77 74 76 mpbid A No B No A s 0 s B s 0 s + s 0 s s + s A
78 20 77 eqbrtrrid A No B No A s 0 s B s 0 s 0 s s + s A
79 simpr A No B No A s 0 s B s 0 s B s 0 s
80 68 75 slenegd A No B No A s 0 s B s 0 s B s 0 s + s 0 s s + s B
81 79 80 mpbid A No B No A s 0 s B s 0 s + s 0 s s + s B
82 20 81 eqbrtrrid A No B No A s 0 s B s 0 s 0 s s + s B
83 72 73 78 82 mulsge0d A No B No A s 0 s B s 0 s 0 s s + s A s + s B
84 83 69 breqtrd A No B No A s 0 s B s 0 s 0 s s A s B
85 51 84 8 syl2an2r A No B No A s 0 s B s 0 s abs s A s B = A s B
86 69 71 85 3eqtr4rd A No B No A s 0 s B s 0 s abs s A s B = + s A s abs s B
87 39 ad2antlr A No B No A s 0 s 0 s s B B s 0 s
88 66 86 87 mpjaodan A No B No A s 0 s abs s A s B = + s A s abs s B
89 abssnid A No A s 0 s abs s A = + s A
90 89 oveq1d A No A s 0 s abs s A s abs s B = + s A s abs s B
91 90 adantlr A No B No A s 0 s abs s A s abs s B = + s A s abs s B
92 88 91 eqtr4d A No B No A s 0 s abs s A s B = abs s A s abs s B
93 sletric 0 s No A No 0 s s A A s 0 s
94 24 93 mpan A No 0 s s A A s 0 s
95 94 adantr A No B No 0 s s A A s 0 s
96 45 92 95 mpjaodan A No B No abs s A s B = abs s A s abs s B