| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulscl |  |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( A x.s B ) e. No ) | 
						
							| 3 |  | simplll |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> A e. No ) | 
						
							| 4 |  | simpllr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> B e. No ) | 
						
							| 5 |  | simplr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s A ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s B ) | 
						
							| 7 | 3 4 5 6 | mulsge0d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s ( A x.s B ) ) | 
						
							| 8 |  | abssid |  |-  ( ( ( A x.s B ) e. No /\ 0s <_s ( A x.s B ) ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) | 
						
							| 9 | 2 7 8 | syl2an2r |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) | 
						
							| 10 |  | abssid |  |-  ( ( B e. No /\ 0s <_s B ) -> ( abs_s ` B ) = B ) | 
						
							| 11 | 10 | ad4ant24 |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` B ) = B ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( A x.s ( abs_s ` B ) ) = ( A x.s B ) ) | 
						
							| 13 | 9 12 | eqtr4d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) | 
						
							| 14 |  | simplll |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> A e. No ) | 
						
							| 15 |  | simpllr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> B e. No ) | 
						
							| 16 | 14 15 | mulnegs2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) | 
						
							| 17 |  | abssnid |  |-  ( ( B e. No /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) | 
						
							| 18 | 17 | ad4ant24 |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s ( abs_s ` B ) ) = ( A x.s ( -us ` B ) ) ) | 
						
							| 20 |  | negs0s |  |-  ( -us ` 0s ) = 0s | 
						
							| 21 | 15 | negscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` B ) e. No ) | 
						
							| 22 |  | simplr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s A ) | 
						
							| 23 |  | simpr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> B <_s 0s ) | 
						
							| 24 |  | 0sno |  |-  0s e. No | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s e. No ) | 
						
							| 26 | 15 25 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( B <_s 0s <-> ( -us ` 0s ) <_s ( -us ` B ) ) ) | 
						
							| 27 | 23 26 | mpbid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` B ) ) | 
						
							| 28 | 20 27 | eqbrtrrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( -us ` B ) ) | 
						
							| 29 | 14 21 22 28 | mulsge0d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( A x.s ( -us ` B ) ) ) | 
						
							| 30 | 29 16 | breqtrd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( -us ` ( A x.s B ) ) ) | 
						
							| 31 | 20 30 | eqbrtrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) | 
						
							| 32 | 2 | adantr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s B ) e. No ) | 
						
							| 33 | 32 25 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( ( A x.s B ) <_s 0s <-> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) ) | 
						
							| 34 | 31 33 | mpbird |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s B ) <_s 0s ) | 
						
							| 35 |  | abssnid |  |-  ( ( ( A x.s B ) e. No /\ ( A x.s B ) <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) | 
						
							| 36 | 2 34 35 | syl2an2r |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) | 
						
							| 37 | 16 19 36 | 3eqtr4rd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) | 
						
							| 38 |  | sletric |  |-  ( ( 0s e. No /\ B e. No ) -> ( 0s <_s B \/ B <_s 0s ) ) | 
						
							| 39 | 24 38 | mpan |  |-  ( B e. No -> ( 0s <_s B \/ B <_s 0s ) ) | 
						
							| 40 | 39 | ad2antlr |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( 0s <_s B \/ B <_s 0s ) ) | 
						
							| 41 | 13 37 40 | mpjaodan |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) | 
						
							| 42 |  | abssid |  |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) | 
						
							| 43 | 42 | adantlr |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` A ) = A ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( A x.s ( abs_s ` B ) ) ) | 
						
							| 45 | 41 44 | eqtr4d |  |-  ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 46 |  | simplll |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> A e. No ) | 
						
							| 47 |  | simpllr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> B e. No ) | 
						
							| 48 | 46 47 | mulnegs1d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( -us ` A ) x.s B ) = ( -us ` ( A x.s B ) ) ) | 
						
							| 49 | 10 | ad4ant24 |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` B ) = B ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( -us ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s B ) ) | 
						
							| 51 | 1 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( A x.s B ) e. No ) | 
						
							| 52 | 46 | negscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` A ) e. No ) | 
						
							| 53 |  | simplr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> A <_s 0s ) | 
						
							| 54 | 24 | a1i |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s e. No ) | 
						
							| 55 | 46 54 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) | 
						
							| 56 | 53 55 | mpbid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` 0s ) <_s ( -us ` A ) ) | 
						
							| 57 | 20 56 | eqbrtrrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( -us ` A ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s B ) | 
						
							| 59 | 52 47 57 58 | mulsge0d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( ( -us ` A ) x.s B ) ) | 
						
							| 60 | 59 48 | breqtrd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( -us ` ( A x.s B ) ) ) | 
						
							| 61 | 20 60 | eqbrtrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) | 
						
							| 62 | 51 | adantr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A x.s B ) e. No ) | 
						
							| 63 | 62 54 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( A x.s B ) <_s 0s <-> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) ) | 
						
							| 64 | 61 63 | mpbird |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A x.s B ) <_s 0s ) | 
						
							| 65 | 51 64 35 | syl2an2r |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) | 
						
							| 66 | 48 50 65 | 3eqtr4rd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 67 |  | simplll |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> A e. No ) | 
						
							| 68 |  | simpllr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> B e. No ) | 
						
							| 69 | 67 68 | mul2negsd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) ) | 
						
							| 70 | 17 | ad4ant24 |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( ( -us ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( -us ` B ) ) ) | 
						
							| 72 | 67 | negscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` A ) e. No ) | 
						
							| 73 | 68 | negscld |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` B ) e. No ) | 
						
							| 74 |  | simplr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> A <_s 0s ) | 
						
							| 75 | 24 | a1i |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s e. No ) | 
						
							| 76 | 67 75 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) | 
						
							| 77 | 74 76 | mpbid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` A ) ) | 
						
							| 78 | 20 77 | eqbrtrrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( -us ` A ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> B <_s 0s ) | 
						
							| 80 | 68 75 | slenegd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( B <_s 0s <-> ( -us ` 0s ) <_s ( -us ` B ) ) ) | 
						
							| 81 | 79 80 | mpbid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` B ) ) | 
						
							| 82 | 20 81 | eqbrtrrid |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( -us ` B ) ) | 
						
							| 83 | 72 73 78 82 | mulsge0d |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( ( -us ` A ) x.s ( -us ` B ) ) ) | 
						
							| 84 | 83 69 | breqtrd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( A x.s B ) ) | 
						
							| 85 | 51 84 8 | syl2an2r |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) | 
						
							| 86 | 69 71 85 | 3eqtr4rd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 87 | 39 | ad2antlr |  |-  ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( 0s <_s B \/ B <_s 0s ) ) | 
						
							| 88 | 66 86 87 | mpjaodan |  |-  ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 89 |  | abssnid |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( A e. No /\ A <_s 0s ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 91 | 90 | adantlr |  |-  ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 92 | 88 91 | eqtr4d |  |-  ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 93 |  | sletric |  |-  ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 94 | 24 93 | mpan |  |-  ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 96 | 45 92 95 | mpjaodan |  |-  ( ( A e. No /\ B e. No ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |