Step |
Hyp |
Ref |
Expression |
1 |
|
mulscl |
|- ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) |
2 |
1
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( A x.s B ) e. No ) |
3 |
|
simplll |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> A e. No ) |
4 |
|
simpllr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> B e. No ) |
5 |
|
simplr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s A ) |
6 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s B ) |
7 |
3 4 5 6
|
mulsge0d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> 0s <_s ( A x.s B ) ) |
8 |
|
abssid |
|- ( ( ( A x.s B ) e. No /\ 0s <_s ( A x.s B ) ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) |
9 |
2 7 8
|
syl2an2r |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) |
10 |
|
abssid |
|- ( ( B e. No /\ 0s <_s B ) -> ( abs_s ` B ) = B ) |
11 |
10
|
ad4ant24 |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` B ) = B ) |
12 |
11
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( A x.s ( abs_s ` B ) ) = ( A x.s B ) ) |
13 |
9 12
|
eqtr4d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) |
14 |
|
simplll |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> A e. No ) |
15 |
|
simpllr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> B e. No ) |
16 |
14 15
|
mulnegs2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |
17 |
|
abssnid |
|- ( ( B e. No /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) |
18 |
17
|
ad4ant24 |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) |
19 |
18
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s ( abs_s ` B ) ) = ( A x.s ( -us ` B ) ) ) |
20 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
21 |
15
|
negscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` B ) e. No ) |
22 |
|
simplr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s A ) |
23 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> B <_s 0s ) |
24 |
|
0sno |
|- 0s e. No |
25 |
24
|
a1i |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s e. No ) |
26 |
15 25
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( B <_s 0s <-> ( -us ` 0s ) <_s ( -us ` B ) ) ) |
27 |
23 26
|
mpbid |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` B ) ) |
28 |
20 27
|
eqbrtrrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( -us ` B ) ) |
29 |
14 21 22 28
|
mulsge0d |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( A x.s ( -us ` B ) ) ) |
30 |
29 16
|
breqtrd |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> 0s <_s ( -us ` ( A x.s B ) ) ) |
31 |
20 30
|
eqbrtrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) |
32 |
2
|
adantr |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s B ) e. No ) |
33 |
32 25
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( ( A x.s B ) <_s 0s <-> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) ) |
34 |
31 33
|
mpbird |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( A x.s B ) <_s 0s ) |
35 |
|
abssnid |
|- ( ( ( A x.s B ) e. No /\ ( A x.s B ) <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) |
36 |
2 34 35
|
syl2an2r |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) |
37 |
16 19 36
|
3eqtr4rd |
|- ( ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) |
38 |
|
sletric |
|- ( ( 0s e. No /\ B e. No ) -> ( 0s <_s B \/ B <_s 0s ) ) |
39 |
24 38
|
mpan |
|- ( B e. No -> ( 0s <_s B \/ B <_s 0s ) ) |
40 |
39
|
ad2antlr |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( 0s <_s B \/ B <_s 0s ) ) |
41 |
13 37 40
|
mpjaodan |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s ( abs_s ` B ) ) ) |
42 |
|
abssid |
|- ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) |
43 |
42
|
adantlr |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` A ) = A ) |
44 |
43
|
oveq1d |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( A x.s ( abs_s ` B ) ) ) |
45 |
41 44
|
eqtr4d |
|- ( ( ( A e. No /\ B e. No ) /\ 0s <_s A ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |
46 |
|
simplll |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> A e. No ) |
47 |
|
simpllr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> B e. No ) |
48 |
46 47
|
mulnegs1d |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( -us ` A ) x.s B ) = ( -us ` ( A x.s B ) ) ) |
49 |
10
|
ad4ant24 |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` B ) = B ) |
50 |
49
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( -us ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s B ) ) |
51 |
1
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( A x.s B ) e. No ) |
52 |
46
|
negscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` A ) e. No ) |
53 |
|
simplr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> A <_s 0s ) |
54 |
24
|
a1i |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s e. No ) |
55 |
46 54
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) |
56 |
53 55
|
mpbid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` 0s ) <_s ( -us ` A ) ) |
57 |
20 56
|
eqbrtrrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( -us ` A ) ) |
58 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s B ) |
59 |
52 47 57 58
|
mulsge0d |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( ( -us ` A ) x.s B ) ) |
60 |
59 48
|
breqtrd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> 0s <_s ( -us ` ( A x.s B ) ) ) |
61 |
20 60
|
eqbrtrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) |
62 |
51
|
adantr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A x.s B ) e. No ) |
63 |
62 54
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( ( A x.s B ) <_s 0s <-> ( -us ` 0s ) <_s ( -us ` ( A x.s B ) ) ) ) |
64 |
61 63
|
mpbird |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( A x.s B ) <_s 0s ) |
65 |
51 64 35
|
syl2an2r |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( -us ` ( A x.s B ) ) ) |
66 |
48 50 65
|
3eqtr4rd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ 0s <_s B ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) |
67 |
|
simplll |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> A e. No ) |
68 |
|
simpllr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> B e. No ) |
69 |
67 68
|
mul2negsd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) ) |
70 |
17
|
ad4ant24 |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` B ) = ( -us ` B ) ) |
71 |
70
|
oveq2d |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( ( -us ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( -us ` B ) ) ) |
72 |
67
|
negscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` A ) e. No ) |
73 |
68
|
negscld |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` B ) e. No ) |
74 |
|
simplr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> A <_s 0s ) |
75 |
24
|
a1i |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s e. No ) |
76 |
67 75
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) |
77 |
74 76
|
mpbid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` A ) ) |
78 |
20 77
|
eqbrtrrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( -us ` A ) ) |
79 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> B <_s 0s ) |
80 |
68 75
|
slenegd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( B <_s 0s <-> ( -us ` 0s ) <_s ( -us ` B ) ) ) |
81 |
79 80
|
mpbid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` B ) ) |
82 |
20 81
|
eqbrtrrid |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( -us ` B ) ) |
83 |
72 73 78 82
|
mulsge0d |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( ( -us ` A ) x.s ( -us ` B ) ) ) |
84 |
83 69
|
breqtrd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> 0s <_s ( A x.s B ) ) |
85 |
51 84 8
|
syl2an2r |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( A x.s B ) ) |
86 |
69 71 85
|
3eqtr4rd |
|- ( ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) /\ B <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) |
87 |
39
|
ad2antlr |
|- ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( 0s <_s B \/ B <_s 0s ) ) |
88 |
66 86 87
|
mpjaodan |
|- ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) |
89 |
|
abssnid |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) |
90 |
89
|
oveq1d |
|- ( ( A e. No /\ A <_s 0s ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) |
91 |
90
|
adantlr |
|- ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( ( abs_s ` A ) x.s ( abs_s ` B ) ) = ( ( -us ` A ) x.s ( abs_s ` B ) ) ) |
92 |
88 91
|
eqtr4d |
|- ( ( ( A e. No /\ B e. No ) /\ A <_s 0s ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |
93 |
|
sletric |
|- ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) |
94 |
24 93
|
mpan |
|- ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) |
95 |
94
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) |
96 |
45 92 95
|
mpjaodan |
|- ( ( A e. No /\ B e. No ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |