Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
|- 0s e. No |
2 |
|
sleloe |
|- ( ( A e. No /\ 0s e. No ) -> ( A <_s 0s <-> ( A |
3 |
1 2
|
mpan2 |
|- ( A e. No -> ( A <_s 0s <-> ( A |
4 |
|
sltnle |
|- ( ( A e. No /\ 0s e. No ) -> ( A -. 0s <_s A ) ) |
5 |
1 4
|
mpan2 |
|- ( A e. No -> ( A -. 0s <_s A ) ) |
6 |
|
abssval |
|- ( A e. No -> ( abs_s ` A ) = if ( 0s <_s A , A , ( -us ` A ) ) ) |
7 |
|
iffalse |
|- ( -. 0s <_s A -> if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) |
8 |
6 7
|
sylan9eq |
|- ( ( A e. No /\ -. 0s <_s A ) -> ( abs_s ` A ) = ( -us ` A ) ) |
9 |
8
|
ex |
|- ( A e. No -> ( -. 0s <_s A -> ( abs_s ` A ) = ( -us ` A ) ) ) |
10 |
5 9
|
sylbid |
|- ( A e. No -> ( A ( abs_s ` A ) = ( -us ` A ) ) ) |
11 |
|
abs0s |
|- ( abs_s ` 0s ) = 0s |
12 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
13 |
11 12
|
eqtr4i |
|- ( abs_s ` 0s ) = ( -us ` 0s ) |
14 |
|
fveq2 |
|- ( A = 0s -> ( abs_s ` A ) = ( abs_s ` 0s ) ) |
15 |
|
fveq2 |
|- ( A = 0s -> ( -us ` A ) = ( -us ` 0s ) ) |
16 |
13 14 15
|
3eqtr4a |
|- ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) ) |
17 |
16
|
a1i |
|- ( A e. No -> ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) ) ) |
18 |
10 17
|
jaod |
|- ( A e. No -> ( ( A ( abs_s ` A ) = ( -us ` A ) ) ) |
19 |
3 18
|
sylbid |
|- ( A e. No -> ( A <_s 0s -> ( abs_s ` A ) = ( -us ` A ) ) ) |
20 |
19
|
imp |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) |