| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0sno |  |-  0s e. No | 
						
							| 2 |  | sleloe |  |-  ( ( A e. No /\ 0s e. No ) -> ( A <_s 0s <-> ( A  | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. No -> ( A <_s 0s <-> ( A  | 
						
							| 4 |  | sltnle |  |-  ( ( A e. No /\ 0s e. No ) -> ( A  -. 0s <_s A ) ) | 
						
							| 5 | 1 4 | mpan2 |  |-  ( A e. No -> ( A  -. 0s <_s A ) ) | 
						
							| 6 |  | abssval |  |-  ( A e. No -> ( abs_s ` A ) = if ( 0s <_s A , A , ( -us ` A ) ) ) | 
						
							| 7 |  | iffalse |  |-  ( -. 0s <_s A -> if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) | 
						
							| 8 | 6 7 | sylan9eq |  |-  ( ( A e. No /\ -. 0s <_s A ) -> ( abs_s ` A ) = ( -us ` A ) ) | 
						
							| 9 | 8 | ex |  |-  ( A e. No -> ( -. 0s <_s A -> ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 10 | 5 9 | sylbid |  |-  ( A e. No -> ( A  ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 11 |  | abs0s |  |-  ( abs_s ` 0s ) = 0s | 
						
							| 12 |  | negs0s |  |-  ( -us ` 0s ) = 0s | 
						
							| 13 | 11 12 | eqtr4i |  |-  ( abs_s ` 0s ) = ( -us ` 0s ) | 
						
							| 14 |  | fveq2 |  |-  ( A = 0s -> ( abs_s ` A ) = ( abs_s ` 0s ) ) | 
						
							| 15 |  | fveq2 |  |-  ( A = 0s -> ( -us ` A ) = ( -us ` 0s ) ) | 
						
							| 16 | 13 14 15 | 3eqtr4a |  |-  ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) ) | 
						
							| 17 | 16 | a1i |  |-  ( A e. No -> ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 18 | 10 17 | jaod |  |-  ( A e. No -> ( ( A  ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 19 | 3 18 | sylbid |  |-  ( A e. No -> ( A <_s 0s -> ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) |