Metamath Proof Explorer


Theorem abssnid

Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssnid
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) )

Proof

Step Hyp Ref Expression
1 0sno
 |-  0s e. No
2 sleloe
 |-  ( ( A e. No /\ 0s e. No ) -> ( A <_s 0s <-> ( A 
3 1 2 mpan2
 |-  ( A e. No -> ( A <_s 0s <-> ( A 
4 sltnle
 |-  ( ( A e. No /\ 0s e. No ) -> ( A  -. 0s <_s A ) )
5 1 4 mpan2
 |-  ( A e. No -> ( A  -. 0s <_s A ) )
6 abssval
 |-  ( A e. No -> ( abs_s ` A ) = if ( 0s <_s A , A , ( -us ` A ) ) )
7 iffalse
 |-  ( -. 0s <_s A -> if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) )
8 6 7 sylan9eq
 |-  ( ( A e. No /\ -. 0s <_s A ) -> ( abs_s ` A ) = ( -us ` A ) )
9 8 ex
 |-  ( A e. No -> ( -. 0s <_s A -> ( abs_s ` A ) = ( -us ` A ) ) )
10 5 9 sylbid
 |-  ( A e. No -> ( A  ( abs_s ` A ) = ( -us ` A ) ) )
11 abs0s
 |-  ( abs_s ` 0s ) = 0s
12 negs0s
 |-  ( -us ` 0s ) = 0s
13 11 12 eqtr4i
 |-  ( abs_s ` 0s ) = ( -us ` 0s )
14 fveq2
 |-  ( A = 0s -> ( abs_s ` A ) = ( abs_s ` 0s ) )
15 fveq2
 |-  ( A = 0s -> ( -us ` A ) = ( -us ` 0s ) )
16 13 14 15 3eqtr4a
 |-  ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) )
17 16 a1i
 |-  ( A e. No -> ( A = 0s -> ( abs_s ` A ) = ( -us ` A ) ) )
18 10 17 jaod
 |-  ( A e. No -> ( ( A  ( abs_s ` A ) = ( -us ` A ) ) )
19 3 18 sylbid
 |-  ( A e. No -> ( A <_s 0s -> ( abs_s ` A ) = ( -us ` A ) ) )
20 19 imp
 |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) )