Metamath Proof Explorer


Theorem abssnid

Description: For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssnid A No A s 0 s abs s A = + s A

Proof

Step Hyp Ref Expression
1 0sno 0 s No
2 sleloe A No 0 s No A s 0 s A < s 0 s A = 0 s
3 1 2 mpan2 A No A s 0 s A < s 0 s A = 0 s
4 sltnle A No 0 s No A < s 0 s ¬ 0 s s A
5 1 4 mpan2 A No A < s 0 s ¬ 0 s s A
6 abssval A No abs s A = if 0 s s A A + s A
7 iffalse ¬ 0 s s A if 0 s s A A + s A = + s A
8 6 7 sylan9eq A No ¬ 0 s s A abs s A = + s A
9 8 ex A No ¬ 0 s s A abs s A = + s A
10 5 9 sylbid A No A < s 0 s abs s A = + s A
11 abs0s abs s 0 s = 0 s
12 negs0s + s 0 s = 0 s
13 11 12 eqtr4i abs s 0 s = + s 0 s
14 fveq2 A = 0 s abs s A = abs s 0 s
15 fveq2 A = 0 s + s A = + s 0 s
16 13 14 15 3eqtr4a A = 0 s abs s A = + s A
17 16 a1i A No A = 0 s abs s A = + s A
18 10 17 jaod A No A < s 0 s A = 0 s abs s A = + s A
19 3 18 sylbid A No A s 0 s abs s A = + s A
20 19 imp A No A s 0 s abs s A = + s A