Metamath Proof Explorer


Theorem abssge0

Description: The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssge0 A No 0 s s abs s A

Proof

Step Hyp Ref Expression
1 id 0 s s A 0 s s A
2 iftrue 0 s s A if 0 s s A A + s A = A
3 1 2 breqtrrd 0 s s A 0 s s if 0 s s A A + s A
4 3 adantr 0 s s A A No 0 s s if 0 s s A A + s A
5 negs0s + s 0 s = 0 s
6 0sno 0 s No
7 sletric 0 s No A No 0 s s A A s 0 s
8 6 7 mpan A No 0 s s A A s 0 s
9 8 ord A No ¬ 0 s s A A s 0 s
10 9 impcom ¬ 0 s s A A No A s 0 s
11 simpr ¬ 0 s s A A No A No
12 6 a1i ¬ 0 s s A A No 0 s No
13 11 12 slenegd ¬ 0 s s A A No A s 0 s + s 0 s s + s A
14 10 13 mpbid ¬ 0 s s A A No + s 0 s s + s A
15 5 14 eqbrtrrid ¬ 0 s s A A No 0 s s + s A
16 iffalse ¬ 0 s s A if 0 s s A A + s A = + s A
17 16 adantr ¬ 0 s s A A No if 0 s s A A + s A = + s A
18 15 17 breqtrrd ¬ 0 s s A A No 0 s s if 0 s s A A + s A
19 4 18 pm2.61ian A No 0 s s if 0 s s A A + s A
20 abssval A No abs s A = if 0 s s A A + s A
21 19 20 breqtrrd A No 0 s s abs s A