Metamath Proof Explorer


Theorem abssor

Description: The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssor A No abs s A = A abs s A = + s A

Proof

Step Hyp Ref Expression
1 ifeqor if 0 s s A A + s A = A if 0 s s A A + s A = + s A
2 abssval A No abs s A = if 0 s s A A + s A
3 2 eqeq1d A No abs s A = A if 0 s s A A + s A = A
4 2 eqeq1d A No abs s A = + s A if 0 s s A A + s A = + s A
5 3 4 orbi12d A No abs s A = A abs s A = + s A if 0 s s A A + s A = A if 0 s s A A + s A = + s A
6 1 5 mpbiri A No abs s A = A abs s A = + s A