| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifeqor | ⊢ ( if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  𝐴  ∨  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  (  -us  ‘ 𝐴 ) ) | 
						
							| 2 |  | abssval | ⊢ ( 𝐴  ∈   No   →  ( abss ‘ 𝐴 )  =  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝐴  ∈   No   →  ( ( abss ‘ 𝐴 )  =  𝐴  ↔  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 4 | 2 | eqeq1d | ⊢ ( 𝐴  ∈   No   →  ( ( abss ‘ 𝐴 )  =  (  -us  ‘ 𝐴 )  ↔  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 5 | 3 4 | orbi12d | ⊢ ( 𝐴  ∈   No   →  ( ( ( abss ‘ 𝐴 )  =  𝐴  ∨  ( abss ‘ 𝐴 )  =  (  -us  ‘ 𝐴 ) )  ↔  ( if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  𝐴  ∨  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  =  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 6 | 1 5 | mpbiri | ⊢ ( 𝐴  ∈   No   →  ( ( abss ‘ 𝐴 )  =  𝐴  ∨  ( abss ‘ 𝐴 )  =  (  -us  ‘ 𝐴 ) ) ) |