Metamath Proof Explorer


Theorem abssor

Description: The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssor ( 𝐴 No → ( ( abss𝐴 ) = 𝐴 ∨ ( abss𝐴 ) = ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ifeqor ( if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = 𝐴 ∨ if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = ( -us𝐴 ) )
2 abssval ( 𝐴 No → ( abss𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) )
3 2 eqeq1d ( 𝐴 No → ( ( abss𝐴 ) = 𝐴 ↔ if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = 𝐴 ) )
4 2 eqeq1d ( 𝐴 No → ( ( abss𝐴 ) = ( -us𝐴 ) ↔ if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = ( -us𝐴 ) ) )
5 3 4 orbi12d ( 𝐴 No → ( ( ( abss𝐴 ) = 𝐴 ∨ ( abss𝐴 ) = ( -us𝐴 ) ) ↔ ( if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = 𝐴 ∨ if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) = ( -us𝐴 ) ) ) )
6 1 5 mpbiri ( 𝐴 No → ( ( abss𝐴 ) = 𝐴 ∨ ( abss𝐴 ) = ( -us𝐴 ) ) )