Step |
Hyp |
Ref |
Expression |
1 |
|
ifeqor |
⊢ ( if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = 𝐴 ∨ if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = ( -us ‘ 𝐴 ) ) |
2 |
|
abssval |
⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝐴 ∈ No → ( ( abss ‘ 𝐴 ) = 𝐴 ↔ if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = 𝐴 ) ) |
4 |
2
|
eqeq1d |
⊢ ( 𝐴 ∈ No → ( ( abss ‘ 𝐴 ) = ( -us ‘ 𝐴 ) ↔ if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = ( -us ‘ 𝐴 ) ) ) |
5 |
3 4
|
orbi12d |
⊢ ( 𝐴 ∈ No → ( ( ( abss ‘ 𝐴 ) = 𝐴 ∨ ( abss ‘ 𝐴 ) = ( -us ‘ 𝐴 ) ) ↔ ( if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = 𝐴 ∨ if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) = ( -us ‘ 𝐴 ) ) ) ) |
6 |
1 5
|
mpbiri |
⊢ ( 𝐴 ∈ No → ( ( abss ‘ 𝐴 ) = 𝐴 ∨ ( abss ‘ 𝐴 ) = ( -us ‘ 𝐴 ) ) ) |