Step |
Hyp |
Ref |
Expression |
1 |
|
ifeqor |
|- ( if ( 0s <_s A , A , ( -us ` A ) ) = A \/ if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) |
2 |
|
abssval |
|- ( A e. No -> ( abs_s ` A ) = if ( 0s <_s A , A , ( -us ` A ) ) ) |
3 |
2
|
eqeq1d |
|- ( A e. No -> ( ( abs_s ` A ) = A <-> if ( 0s <_s A , A , ( -us ` A ) ) = A ) ) |
4 |
2
|
eqeq1d |
|- ( A e. No -> ( ( abs_s ` A ) = ( -us ` A ) <-> if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) ) |
5 |
3 4
|
orbi12d |
|- ( A e. No -> ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) <-> ( if ( 0s <_s A , A , ( -us ` A ) ) = A \/ if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) ) ) |
6 |
1 5
|
mpbiri |
|- ( A e. No -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) |