| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifeqor |  |-  ( if ( 0s <_s A , A , ( -us ` A ) ) = A \/ if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) | 
						
							| 2 |  | abssval |  |-  ( A e. No -> ( abs_s ` A ) = if ( 0s <_s A , A , ( -us ` A ) ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( A e. No -> ( ( abs_s ` A ) = A <-> if ( 0s <_s A , A , ( -us ` A ) ) = A ) ) | 
						
							| 4 | 2 | eqeq1d |  |-  ( A e. No -> ( ( abs_s ` A ) = ( -us ` A ) <-> if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) ) | 
						
							| 5 | 3 4 | orbi12d |  |-  ( A e. No -> ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) <-> ( if ( 0s <_s A , A , ( -us ` A ) ) = A \/ if ( 0s <_s A , A , ( -us ` A ) ) = ( -us ` A ) ) ) ) | 
						
							| 6 | 1 5 | mpbiri |  |-  ( A e. No -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) |